Average Speed and Velocity

1. Average speed is calculated by taking the total distance traveled and dividing by the total time taken to travel this distance.

Average speed $=$ distance/time
2. Average velocity is the displacement divided by the time.

$$
\begin{aligned}
\text { Average velocity } & =\frac{\text { Displacement }}{\text { Elapsed time }} \\
\overline{\mathbf{v}} & =\frac{\mathbf{x}-\mathbf{x}_{0}}{t-t_{0}}=\frac{\Delta \mathbf{x}}{\Delta t}
\end{aligned}
$$

3. Average speed and average velocity have the same magnitude value when the object is moving in one direction. Only when the direction of the object changes do you get a different magnitude value for average speed and velocity.

Example:
A runner changes position from $X_{1}=50.0 \mathrm{~m}$ to $X_{2}=30.5 \mathrm{~m}$ in 3.00 s . Calculate the runner's average speed and velocity.

$$
\text { Average speed }=\frac{\text { total distance }}{\text { total time }}
$$

$$
\text { Average speed }=\frac{50.0 m-30.5 m}{3.00 s}
$$

$$
\text { Average speed }=6.50 \mathrm{~m} / \mathrm{s}
$$

$$
\text { Average Velocity }=\frac{\text { displacement }}{\text { change in time }}
$$

$$
\text { Average Velocity }=\frac{\overrightarrow{X_{2}}-\overrightarrow{X_{1}}}{\Delta t}
$$

Average Velocity $=30.5 m-50.0 m$ 3.00s

$$
\text { Average Velocity }=-6.50 \mathrm{~m} / \mathrm{s}
$$

The negative indicates the direction and in this case it is in the negative direction.

Example: An airplane travels 200km North in 15 minute , 100km South in 5 minutes, and finally 300 km North in 20 minutes. What is the average velocity of the airplane?

200km(N)

$$
\vec{V}_{a v}=\frac{\overrightarrow{\Delta d}}{t}
$$

Resulting position is 400 km North
 $\mathrm{V}_{\mathrm{av}}=400 \mathrm{~km}$ North - 0 40 minutes

$10 \mathrm{~km} / \mathrm{min}$
$10 \mathrm{~km} / \mathrm{min} \times 60 \mathrm{~min} / 1$ hour
600km/h
See Example 2-2 page 23 for an additional example.

