
Physics 12 Section 7-6 Inelastic Collisions

- 1. In inelastic collisions momentum is conserved while kinetic energy is not. After the collision the total mechanical energy of the system is conserved.
- 2. The ballistic pendulum is a classic case of an inelastic collision.

P_{before} = mv

$$P_{after} = (M + m)v_t$$

Conservation of momentum states:

$$P_{before} = P_{after}$$

$$mv = (M + m)v_{t}$$

$$v = (M + m)v_{t}$$

The total mechanical energy of the system after the collision remains constant:

$$\Delta KE + \Delta PE = 0$$
 $KE_2 - KE_1 + PE_2 - PE_1 = 0$
 $KE_2 + PE_2 = KE_1 + PE_1$
 $KE_1 + PE_1 = KE_2 + PE_2$
 $KE_1 + 0 = 0 + PE_2$
 $\frac{1}{2}(M + m)v_1^2 = (M + m)gh$
 $\frac{1}{2}v_1^2 = gh$
 $v_1^2 = 2gh$
 $v_1 = \sqrt{2}gh$

3. Combining the momentum and energy equations:

$$v = (M + m) \int 2gh$$

4. A 10g golf ball strikes a 5kg watermelon at 100m/s. The watermelon is suspended by a cable. What is the resulting height of the combination (golf ball and melon)?