Physics 12

Section 20-4 Forces on an electric Charge Moving in a Magnetic Field

1. The force that a moving charge experiences while in a magnetic field is given by the following formula:

 $F = qvBsin\theta$

q is the moving charge (C)
v is the velocity of the charge (m/s)
B is the strength of the magnetic field (T)
O is the angle between the path of the charge and the B field

In most cases θ will be 90°

Example: A proton having a speed of 5.0×10^6 m/s in a magnetic field feels a force of $8.0 \times 10^{-14} N$ towards the West when it moves vertically upwards. When moving horizontally in a Northerly direction, it feels zero force. What is the magnitude and direction of the magnetic field in this region?

$$B = \frac{8.0 \times 10^{-14} \text{N}}{1.6 \times 10^{-19} \text{C}} 5.0 \times 10^{6} \text{m/s}$$

$$B = 0.10T$$

2. When a charge enters a uniform magnetic field, the charge experiences a force perpendicular to it motion; the resulting path is circular.

Figure 3. Motion of charged particle in uniform magnetic field

- 3. Using the second right hand rule shows us the direction of the force and in this case it is towards the centre.
- 4. The centre seeking force is constant and as a result orbits with uniform circular motion.

Example: An Electron travels at $2.0 \times 10^7 \text{m/s}$ in a plane perpendicular to a 0.010 T magnetic field. Determine the radius of curvature of the resulting path.

From Newton's second law F = maFrom uniform circular motion $F = mv^2$

if
$$F = qvB$$

then

$$qvB = \frac{mv^2}{r}$$

$$r = \frac{9.1 \times 10^{-31} \text{ kg } 2.0 \times 10^7 \text{ m/s}}{1.6 \times 10^{-19} \text{C } 0.010 \text{T}}$$