Physics 12 Section 20-5 Magnetic Filed Due to a Straight Wire

1. A magnetic field is produced around a current carrying wire.

2. The magnetic field is directly proportional to the amount of current and inversely proportional to the distance away from the wire.

- 3. The above relationship holds as long as r is much smaller then the length of the wire.
- 4. To make the above proportionality an equality, a constant of proportionality must be introduced. The constant is μ_0 and it is the permeability of free space $(4\pi \times 10^{-7} \text{ Tm/A})$. Making the above equation:

$$B = \underline{\mu_o} \underline{I}$$
$$2 \pi r$$

Example: A vertical electric wire in the wall of a building carries a dc current of 25A upward. What is the magnetic field at a point 10cm due North of this wire?

$$B = \underline{\mu_o} \underline{I}$$
$$2 \pi r$$

$$B = \frac{4\pi \times 10^{-7} \text{ Tm/A} \times 25A}{2 \pi \text{ 0.10m}}$$

$$B = 5.0 \times 10^{-5} T$$