- 1. Sketch models to represent the following:
- a) 7²

b) $1000 \ cm^3$

- 2. A cube has a volume of $512 cm^3$.
- a) Write the dimensions as powers with the lowest base.

$$512 = 2^9 \rightarrow \chi^3 = (2^{11})^3$$

b) Write the surface area as a power

$$S_A = 6 \times 8^2$$

- 6x26
- 3. Find a number that can be shown as both a square and a cube $64 = 8^2$ $64 = 4^3$

Evaluate

- a) -5^2
- b) $(-3)^4$
- c) -(-4)

- 25

8

- 69
- 4. Arrange in order from least to greatest

5. Express the following as a single power

a)
$$(5^4)^3 \div (5^2)^2$$

= $5^{12} \div 5^4$
= 5^8

b)
$$(7^4)^2 (7^3)^3$$

6. Complete the following

a)
$$2^{8^{\circ}} = 4^{?}$$

 $1 = 5$

b)
$$125^4 = 5^?$$

c)
$$9^6 = 27^?$$

$$(3^2)^6 = (3^3)^7$$

$$3^{12} = 3^{3}$$

$$10^2 = 4^7$$

7. Simplify as a power

a)
$$\frac{(x^3)(x^6)}{x^5}$$

b)
$$(a^4)^2 \div a^3$$

9. A cube has sides 128 cm. $= 2^{7}$

a) Show the volume as a power

b) Show the surface area as a power

$$5_{A} = 6 \times (2^{7})^{2}$$

= 6×2^{19}

10. Evaluate the following
a)
$$7^{-2} = 72$$

$$= \frac{1}{49}$$

b)
$$(3^{-4})^2 (3^3)^{-3}$$

 $(3^{-8})(3^{-9})$
 $= 3^{-17}$
 $= \frac{1}{3}$

c)
$$2^{-1} + 2^{-2}$$

$$\frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{4} = \frac{3/4}{4}$$

11. Simplify $9^2 \times 32^5$ as a product of powers with the lowest base

$$(3^2)^2 \times (2^5)^5$$
= $3^4 \times 2^{25}$

13. Simplify without using your calculator

a)
$$(-7)^2 - 4^2 \div 8 + (2-6)^2$$

 $49 - 16 \div 8 + (-4)$
 $49 - 2 + 16$
b) $6^3 \div 3^2 + 2^4 - 2^3$
 $216 \div 9 + 16 - 8$
c) $\frac{(\sqrt{6^2 + 8^2}) + \sqrt{5^2 - 4^3} \div 2^6}{2^4 - 3^2 \times 4^0}$
 $10 + 5 - 64 \div 6^{1/2}$
 $16 - 9 \times 1$
 $= \frac{19^{4/7}}{2} = \boxed{2}$

14. The 2 legs of a right triangle measure 2.5 cm and 4.1 cm, respectively. Use the Pythagoras property to find the length of the hypotenuse to 2 decimal places. Sketch and label an appropriate model.

$$c^2 = a^2 + b^2$$

15. Simplify the following without the use of your calculator

a)
$$\sqrt{\frac{36}{49}}$$
 b) $\sqrt{\frac{121}{9}}$ = $\frac{6}{7}$

16. How would you verify that $\sqrt{6.25} = 2.5$, without using your square root $(\sqrt{\ })$ button on your calculator?

$$(2.5)^2 = 6.25$$