Physics 12 Gravitational Potential Energy Revisited and Satellites

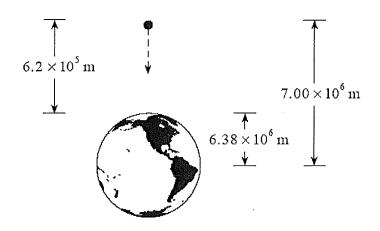
- 1. From Physics 11 we have E_p = mgh. The E_p depends on h and g, but what is h and what is the g value there? Where do you start your measurement?
- 2. We need an Ep formula that will allow us to calculate at any location in space.
- 3. If we define the gravitational potential energy to be 0 at infinity and negative as we get closer to the earth then we have a more useful formula.

$$E_p = \underline{-Gm_1m_2}$$

4. This new form of Ep allows us to calculate the total mechanical energy of any orbiting body. The total mechanical energy is:

TME = KE + PE
Or
TME =
$$E_k + E_p$$

This is known as the law of conservation of mechanical energy


Example:

A satellite orbits the earth with a kinetic energy of 2.0×10^{10} J. Its gravitational potential energy in this orbit is - 4.0×10^{10} J. What is the total energy of the satellite?

Total mechanical energy of the satellite is $E_k + E_p$.

$$2.0 \times 10^{10} \text{J} + -4.0 \times 10^{10} \text{J} = -2 \times 10^{10} \text{J}$$

Example: A 450 kg piece of space debris initially at rest falls from an altitude of 6.2×10^5 m above the earth's surface. What is its kinetic energy just before impact with the surface? (Ignore air resistance.)

$$\Delta E_p + \Delta E_k = 0$$

$$E_{p2} - E_{p1} + E_{k2} - E_{k1} = 0$$

$$E_{k2} = E_{k1} + E_{p1} - E_{p2}$$

$$E_{k2} = 0 + \underline{-Gm_1m_2} - \underline{-Gm_1m_2}$$
 $r_1 \qquad r_2$

$$E_{k2} = \frac{-Gm_1m_2}{r_1} + \frac{Gm_1m_2}{r_2}$$

$$E_{k2} = \frac{-6.67 \times 10^{-11} \times 450 \times 5.98 \times 10^{24}}{7 \times 10^{6}} + \frac{6.67 \times 10^{-11} \times 450 \times 5.98 \times 10^{24}}{6.38 \times 10^{6}}$$

$$E_{k2} = 2.50 \times 10^9 \text{ J}$$

Total mechanical energy of the satellite is $E_k + E_p$.

TME=
$$E_k + E_p$$

Since these objects are orbiting $F_c = F_g$

$$\frac{mv^2}{r} = \frac{Gm_1m_2}{r^2}$$

$$v^2 = \underline{Gm}$$

If you substitute this value in the E_k portion of the TME formula you get:

TME=
$$E_k + E_p$$

TME = $\frac{1}{2}$ mv² + $\frac{-Gm_1m_2}{r}$

TME = $\frac{1}{2}$ mv + $\frac{-Gm_1m_2}{r}$

TME = $\frac{1}{2}$ mv + $\frac{-Gm_1m_2}{r}$

$$TME = \underline{-Gm_1m_2}$$
2r

The total mechanical energy is $\frac{1}{2}$ PE

Energy of an Orbiting Satellite

Total energy = PE + KE

$$KE = -\frac{1}{2}PE$$

Total Energy = $PE + -\frac{1}{2}PE$

Total Energy = $\frac{1}{2}$ PE

Sweet!