Elastic Forces

1. Elastic forces are the result of electromagnetic forces. Objects will stretch and compress when a force is applied.

2. Hooke's Law allows us to quantify elastic forces.

 $F = k\Delta L$ F is the applied force (N)

K is the spring constant (N/m) ΔL is the distance stretched (+) or compressed (-) in (m)

3. Hooke's Law reveals a linear relationship between the applied force and the distance stretched or compressed.

The slope of the graph represents the spring constant (k) in N/m

Example:

How much force would it take to stretch a steel bar 1.0 mm? The spring constant for steel is $2.1 \times 10^7 N/m$.

$$F = k\Delta L$$

 $F = 2.1 \times 10^7 \times .001 \text{m} = 2.1 \times 10^4 \text{N}$