Physics 12

Changing Acceleration

1. The acceleration of an object can change and as a result the object does not have a constant acceleration.

2. The instantaneous acceleration of an object at a given point can be found using the same technique as was used with instantaneous velocity -the slope of the tangent.
3. The slope of the tangent line, at a time of interest, is the instantaneous acceleration of the object at that time.

4. The slope of the tangent line in the above graph is:

$$
\text { Slope }=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}
$$

$$
\text { Slope }=(74-14)
$$

$$
(4-2)
$$

$$
\text { Slope }=\frac{60}{2}=30 \mathrm{~m} / \mathrm{s}^{2}
$$

The Slope of the tangent line at 3 s is $30 \mathrm{~m} / \mathrm{s}^{2}$. This is the instantaneous acceleration of the object at 3 s .

> Velocity - Time graph showing an object with changing acceleration

