Satellite and Chapter 6 Review

A 900 kg satellite which is travelling at 8 600 m/s around a planet of mass 8.1×10^{25} kg has an orbital radius of 7.3×10^7 m. What is the total orbital energy of this satellite relative to infinity? (7 marks)

$$TME = \frac{1}{2} \left(\frac{6m_{1}m_{2}}{7} \right)$$

$$= \frac{1}{2} \left(\frac{6m_{1}m_{2}}{7} \right)$$

$$= -\frac{1}{2} \frac{6.67 \times 10^{-11} \cdot 900 \times 8.1 \times 10^{2}}{7.3 \times 10^{7}}$$

$$= -3.33 \times 10^{10} \text{ J.}$$

2.

A satellite travels in a circular orbit at a height of one Earth radius above the surface of the Earth.

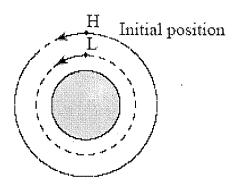
What is the satellite's orbital period? (7 marks)

$$Gm_{1}m_{2} = M^{2}$$
 $Gm_{2} = V^{2}$
 $Gm_{2} = V^{2}$
 $Gm_{2} = V^{2}$
 $Gm_{3} = V^{2}$
 $Gm_{1} = V^{2}$
 $Gm_{2} = V^{2}$
 $Gm_{3} = V^{2}$
 $Gm_{1} = V^{2}$
 $Gm_{2} = V^{2}$
 $Gm_{3} = V^{2}$
 $Gm_{4} = V^{2}$
 $Gm_{5} = V^{2}$
 $Gm_{1} = V^{2}$
 $Gm_{2} = V^{2}$
 $Gm_{3} = V^{2}$
 $Gm_{4} = V^{2}$
 $Gm_{5} = V^{2}$
 Gm_{5

1.

3.

A satellite is placed in circular orbit at an altitude of 4.8×10^5 m above Earth's surface. What is the satellite's orbital period? (5 marks)


$$T = 2\pi \sqrt{\frac{c^3}{6m}}$$

$$= 2\pi \sqrt{\frac{(6.38 \times 10^6 + 4.8 \times 10^7)^3}{6.67 \times 10^{-11} \times 5.98 \times 10^{24}}}$$

$$= 5652.7 S.$$

4.

As shown in the diagram below, two satellites pass over the same point on Earth's surface. Satellite H is in a higher orbit than satellite L.

Which satellite, H or L, completes one orbit first? (Circle one) (1 mark)

A. satellite H

Using principles of physics, explain your answer. (3 marks)