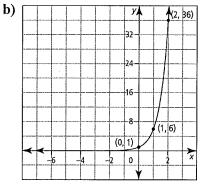
Chapter 4 Review Pt.1 Section 4.1 EXPONENTIAL FUNCTIONS

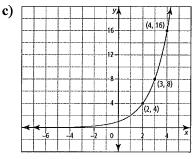
1. State which are exponential. Explain your answer.

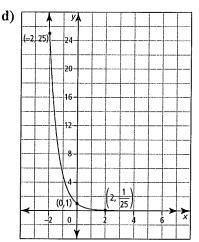
$$y = x^7 \qquad \qquad y = 0.5^x$$

$$y = 4^x$$

$$y = x^{\frac{1}{3}}$$


- 2. Is $y = (-2)^x$ an exponential function? Explain.
- 3. Graph each function and identify the following:
 - the x-intercept and y-intercept
 - whether the function is increasing or decreasing
 - the domain and range
 - the equation of the horizontal asymptote


a)
$$y = 3^x$$

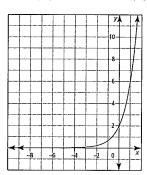

b)
$$y = (0.5)^x$$

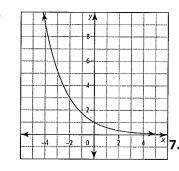
- 4. a) Graph $y = 2^x$, $y = 3^x$, and $y = 4^x$ on the same grid.
 - **b)** For what *x*-value do all three functions have the same *y*-value? What is the *y*-value?
 - c) Graph the functions $y = \left(\frac{1}{2}\right)^x$, $y = \left(\frac{1}{3}\right)^x$, and $y = \left(\frac{1}{4}\right)^x$ on the same grid as you used for part a). Explain what you notice about these functions in relation to each other, and the functions you graphed in part a).
- 5. Determine the equation of each graph.

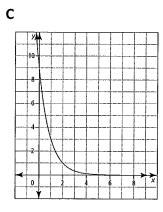
- **6.** Atmospheric pressure varies with altitude above the surface of Earth. For altitudes up to 10 km, the pressure, P, in kilopascals (kPa), is given by $P=100e^{-0.139a}$, where e is the base (approximately equal to 2.7183) and a is the altitude in kilometres. What would the pressure be at 5 km above the surface of Earth? Express your answer to the nearest kilopascal.
- 7. A sample of water contains 200 g of pollutants. Each time the sample is passed through a filter, 20% of its pollutants are removed.
 - a) Write a function that relates the amount of pollutant, *P*, that remains in the sample to the number of times, *t*, the sample is filtered.
 - b) Graph the function.
 - c) Determine an expression that gives the amount of pollutants still in the water after it passes through 5 filters. How many grams are there after 5 filters, rounded to the tenth of a gram?
- 8. Iodine-126 has a half-life of 13 days.
 - a) Write an exponential function to represent the radioactive decay of 100 g of lodine-126.
 - **b)** Graph the function.
 - c) How much lodine-126 will be left after 50 days? Round your answer to hundredths of a gram.
 - d) Describe how you might use your graph to calculate the length of time it will take for 100 g of lodine-126 to decay to 15 g. How long with this decay take, to the nearest half day?
- 9. The population of rabbits in a park is increasing by 70% every 6 months. Presently there are 200 rabbits in the park.
 - a) What will the base be for the exponential function that represents this scenario? Explain.
 - b) Write an exponential function that represents this scenario. Use *P* to represent the rabbit population, and *t* to represent the time in months.
 - c) How many rabbits will there be in 15 months?

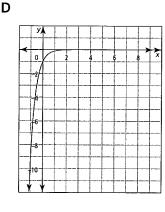
- 10. Jennifer and Brody are going scuba diving. In the particular spot they are diving, the intensity of light is reduced by 2% for each metre that they descend below the surface of the water.
 - a) Write the exponential decay model that relates the amount of light, L, that is available at each depth, d, in 1-m increments.
 - **b)** What are the domain and range?
 - c) Graph the function for an appropriate domain.
 - d) Use your graph to determine at what depth, to the nearest metre, the intensity of light is only 10% of the intensity at the surface.

Section 4.2


A


1. Match each function with the corresponding transformation of $y = 4^x$.


a)
$$y = -4^x$$
 b) $y = 4^{-x}$ c) $y = 4^x - 2$ d) $y = 4^{x-2}$


- reflection in the x-axis **B** reflection in the y-axis
- vertical stretch
- D horizontal stretch
- translation down
- F translation up
- translation left
- H translation right
- 2. Without using technology, match each function with the corresponding graph.

a)
$$y = \left(\frac{1}{3}\right)^{x-2}$$
 b) $y = 2\left(\frac{1}{3}\right)^{-x}$ **c)** $y = -\left(\frac{1}{3}\right)^{2x}$ **d)** $y = \left(\frac{1}{3}\right)^{\frac{1}{2}x}$

3. Complete the following table to show the progression of the transformation.

$y=5^x$	y=-5 ^x	$y = -\frac{1}{2}(5)^x$	$y = -\frac{1}{2} (5)^{x+4} - 6$
$\left(-2,\frac{1}{25}\right)$			
$\left(-1,\frac{1}{5}\right)$		-	
(0, 1)			
(1, 5)			
(2, 25)			

4. State the parameters a, b, h, and k. Describe the transformation that corresponds to each parameter.

a)
$$f(x) = 4(2)^x + 6$$

b)
$$g(x) = -(0.3)^{x-4}$$

c)
$$h(x) = \frac{3(5)^{4(x-9)}}{2} - 8$$

c)
$$h(x) = \frac{3(5)^{4(x-9)}}{2} - 8$$
 d) $k(x) = \frac{1}{2} \left(\frac{1}{3}\right)^{-\frac{4}{5}(x+2)} + \frac{7}{4}$

5. Sketch each of the following functions. Identify the corresponding y-value for each given value of x.

a)
$$y = (4)^{0.5(x-1)} + 7$$
; $x = 1$, $x = 3$, $x = 5$

b)
$$y = -3(2)^{2(x+5)}$$
; $x = -5$, $x = -4.5$, $x = -4$

c)
$$y = \frac{1}{2}(3)^{x-6} - 5$$
; $x = 6$, $x = 7$, $x = 8$

- 6. Write each transformed function in the form $y = a(c)^{b(x-h)} + k.$
 - a) $f(x) = (0.5)^x$ after it has been vertically stretched by a factor of 3, reflected over the y-axis, and translated 4 units left and 3 units down
 - **b)** $g(x) = 3^x$ after it has been horizontally stretched by a factor of one half, reflected over the x-axis, and translated 7 units up

c)
$$h(x) = 2^x$$
, $y = -4h(2(x-3)) + 5$

d)
$$k(x) = \left(\frac{1}{5}\right)^x$$
, $y = \frac{k(x+1)}{3}$

For the following exponential functions, state the

- domain and range
- equation of the horizontal asymptote
- x-intercept and y-intercept

a)
$$f(x) = -6(3)^x + 2$$

b)
$$g(x) = 0.5(4)^{-2x} - 4$$

c)
$$h(x) = 2\left(\frac{1}{3}\right)^{-x}$$

- 8. a) Given $y = 3^x$, list the parameters of the transformed exponential function $y = 0.5(3)^{-2(x+4)} + 7$.
 - b) Describe how each parameter in part a) transforms the graph of the original function, $y = 3^x$.
 - c) The following points lie on the graph of $y = 3^x$: (0, 1), (1, 3), (2, 9). Write the transformed point that corresponds to each for the function y = $0.5(3)^{-2(x+4)} + 7.$

- 9. The estimated population of a city in 2011 was 35 000, 7. If \$5000 is invested at 7.2% per year compounded with an annual rate of increase of about 2.4%.
 - a) What is the growth factor for this city?
 - b) Graph the population growth of this city from 2011 until 2021.
 - c) Estimate the population in 2016.
- 10. The pressure of Earth's atmosphere is 14.7 lb/in.² at sea level. Pressure decreases by about 20% for each mile of ascent up to an altitude of about 50 miles.
 - a) Graph this situation up to 10 mi.
 - b) Estimate the pressure at an altitude of 5 mi to the nearest pound per square inch

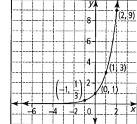
Section 4.3

- 1. Write each expression as a single power of 2.
 - a) 0.5

- b) $\sqrt{32}$ c) 512 d) $\left(\frac{1}{16}\right)^3$
- 2. Rewrite the expressions in each pair so that they have the same base.
 - a) 25 and $\frac{1}{125}$
- **b)** 27 and $\sqrt[3]{81}$
- c) 0.25 and 8
- **d)** $\sqrt[3]{6}$ and $36\sqrt{6}$
- 3. Solve. Check your answer using substitution.

 - a) $3^{4x}(3) = 27^{2x}$ b) $\left(\frac{4}{7}\right)^{5x} = \left(\frac{64}{343}\right)^{2x-1}$
 - c) $\left(\frac{1}{9}\right)^x = \frac{27^x}{9^{2x-1}}$ d) $2^{x-1} = (128^x)(2^x)$

- **4.** Solve. **a)** $16^{x+1} = 8^{1-x}$ **b)** $27^{x+2} = \left(\frac{1}{3}\right)^{3-6x}$

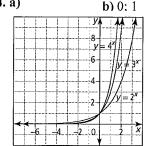

 - c) $8^{x-1} = \left(\frac{1}{16}\right)^{5-x}$ d) $\left(\frac{1}{6}\right)^{3x-2} = 36^{x+4}$
- **5.** Solve for t. Round your answers to two decimal places.
 - a) $800 = 500(1.03)^t$
- **b)** $5 = 200 \left(\frac{1}{2}\right)^{-1}$

- 6. Write an exponential expression that will determine the value, V, of the investment, t, in years.
 - a) \$3000 is invested at 5.2% per year compounded semi-annually
 - b) \$2500 is invested at 4% per year compounded quarterly
 - c) \$8000 is invested at 6% per year compounded monthly
 - d) \$6300 is invested at 2.1% per year

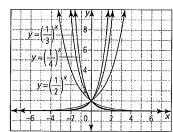
- monthly, how long will it take for the investment to increase to \$8000? Answer in years to two decimals.
- 8. a) Determine how much an investment of \$3500 will be worth after 4 years if it is compounded semiannually at a rate of 5% per year.
 - b) How long will it take for the investment to double in value? Answer in years to two decimal places.
- 9. Malcolm bought a new car for \$24 000. Every year it will depreciate in value by 8%.
 - a) How much will the car be worth after 5 years?
 - b) How long will it take for the car to be worth a quarter of its original value? Give your answer to two decimal places.
- 10. a) Jamie borrows \$6000 from the bank at a rate of 8% per year compounded monthly. How much would he owe at the end of one month, if he does not make his first payment?
 - b) Steven borrows \$6000 on his credit card at the rate of 19.99% per year compounded monthly. How much would he owe at the end of one month, if he does not make his first payment?

Answers Section 4.1

- 1. $y = 0.5^x$ and $y = 4^x$ are exponential since they in the form $y = c^x$, where c is a constant greater than 0 and x is a variable.
- 2. No. The constant is not a value greater than zero, so the graph is not a continuous decreasing or increasing function.

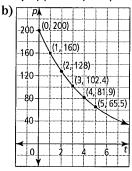


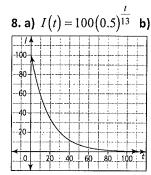
x-intercept: does not exist, yintercept: 1; function is increasing; domain: $\{x \mid x \in R\}$, range: $\{y \mid x \in R\}$ $y > 0, y \in \mathbb{R}$; y = 0


b)

x-intercept: does not exist, y-intercept: 1; function is decreasing; domain: $\{x \mid x \in R\}$, range: $\{y \mid y > 0, y \in R\};$ y = 0

4. a)



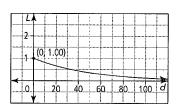

The graphs have the same y-intercept: y = 1. These graphs are the horizontal reflections of the graphs in part a).

5. a)
$$y = \left(\frac{1}{3}\right)^x$$
 b) $y = 6^x$ **c)** $y = 2^x$ **d)** $y = \left(\frac{1}{5}\right)^x$ **6.** 50 kPa

7. a) $P(t) = 200(0.80)^t$

c)
$$200(0.80)^5 = 65.5$$

c) 6.95 g d) graph f(t) = 15 on the same axes as the original graph and find the intersection point; 35.5 days


9. a) 1.7; the population is increasing by 70%, so 100% + 70%

b)
$$P = 200(1.7)^{\frac{t}{6}}$$

10. a)
$$L(d) = (0.98)^d$$

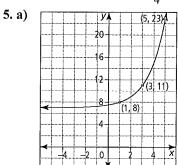
b) domain: $\{d \mid d \ge 0, d \in \mathbb{R}\}$, range: $\{L \mid 0 < L \le 1, L \in R\}$

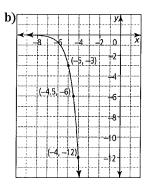
d) 114 m

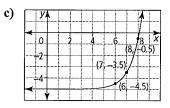
Section 4.2

1.a) A b) B c) E d) H 2.a) C b) A c) D d) B

y = 5*	y = -5 ^x	$y = -\frac{1}{2}(5)^{x}$	$y = -\frac{1}{2}(5)^{x+4} - 6$
$\left(-2,\frac{1}{25}\right)$	$\left(-2, -\frac{1}{25}\right)$	$\left(-2,-\frac{1}{50}\right)$	$\left(-6, -6\frac{1}{50}\right)$
$\left(-1,\frac{1}{5}\right)$	$\left(-1,-\frac{1}{5}\right)$	$\left(-1, -\frac{1}{10}\right)$	$\left(-5, -6\frac{1}{10}\right)$
(0, 1)	(0, -1)	$\left(0,-\frac{1}{2}\right)$	$\left(-4, -6\frac{1}{2}\right)$
(1, 5)	(1, -5)	$\left(1,-\frac{5}{2}\right)$	$\left(-3, -8\frac{1}{2}\right)$
(2, 25)	(2, –25)	$\left(2,-\frac{25}{2}\right)$	$\left(-2, -18\frac{1}{2}\right)$


4. a) a = 4: vertical stretch by a factor of 4, b = 1: no change, h = 0: no change, k = 6: translation 6 units up


b) a = -1: reflection over the x-axis, b = 1: no change, h = 4: translation 4 units right, k = 0: no change


c) $a = \frac{3}{2}$: vertical stretch by a factor of $\frac{3}{2}$, b = 4: horizontal stretch

by a factor of $\frac{1}{4}$, h = 9: translation 9 right, k = -8: translation 8 down

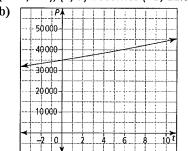
d) $a = \frac{1}{2}$: vertical stretch by a factor of $\frac{1}{2}$, $b = -\frac{4}{5}$: reflection over the y-axis and horizontal stretch by a factor of $\frac{5}{4}$, h = -2: translation 2 units left, $k = \frac{7}{4}$: translation 1.75 units up

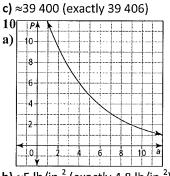
6 a)
$$y = 3(0.5)^{-(x+4)} - 3$$
 b) $y = -(3)^{2x} + 7$
c) $y = -4(2)^{2(x-3)} + 5$ d) $y = \frac{1}{3} \left(\frac{1}{5}\right)^{x+1}$

7. a) domain: $\{x \mid x \in R\}$, range: $\{y \mid y < R\}$ 2, $y \in R$ }; y = 2; x-intercept = (-1, 0), yintercept (0, -4)

b) domain: $\{x \mid x \in R\}$, range: $\{y \mid y > -4, y \in R\}$;

y = -4; x-intercept (-0.75, 0), y-intercept (0, -3.5)


c) domain: $\{x \mid x \in R\}$, range: $\{y \mid y > 0, y \in R\}$;


y = 0; x-intercept does not exist, y-intercept (0, 2)

8. a) a = 0.5, b = -2, h = -4, k = 7 b) vertical stretch by a factor of 0.5, a reflection over the y-axis, a horizontal stretch by a factor

of $\frac{1}{2}$, a horizontal translation 4 units left, and a vertical

translation 7 units up c) (0, 1) becomes (-4, 7.5), (1, 3) becomes (-4.5, 8.5), (2, 9) becomes (-5, 11.5) 9. a) 1.024

Section 4.3

b) \approx 5 lb/in.² (exactly 4.8 lb/in.²)

1. a)
$$2^{-1}$$
 b) $2^{\frac{5}{2}}$ **c)** 2^{9} **d)** 2^{-20} **2. a)** 5^{2} and 5^{-3} **b)** 3^{3} and $3^{\frac{4}{3}}$ **2c)** 2^{-2} and 2^{3} **d)** $6^{\frac{1}{3}}$ and $6^{\frac{5}{2}}$ **3. a)** 0.5 or $\frac{1}{2}$ **b)** 3 **c)** -2 **d)** $-\frac{1}{7}$

4. a)
$$-\frac{1}{7} \approx -0.14$$
 b) 3 **c)** 17 **d)** $-\frac{6}{5} = -1.2$ **5. a)** 15.90

5b) 1.77 **c)** 6.84 **d)**
$$-0.76$$
 6. a) $V = 3000(1.026)^{2t}$

b)
$$V = 2500(1.01)^{4t}$$
 c) $V = 8000(1.005)^{12t}$ **d)** $V = 6300(1.021)^{t}$

8. a) \$4264.41 b) 14.04 years **7.** 6.55 years

9. a) \$15 817.96 b) 16.63 years **10.** a) \$6040 b) \$6099.95