MA 12 LG 11 Review Sheet (Exponents \& Equations1)

1. Find $\angle \mathrm{A}$ exactly in radians if A is in the first quadrant and:
a. $\quad \operatorname{Sin} \mathrm{A}=\frac{1}{2}$
b. $\quad \operatorname{Tan} \mathrm{A}=\frac{1}{\sqrt{3}}$
c. $\quad \operatorname{Cos} \mathrm{A}=\frac{1}{2}$
d. $\operatorname{Tan} \mathrm{A}=1$
2. Give the exact value of expression:
a. $\operatorname{Sin} 30^{\circ}+\operatorname{Cos}-90^{\circ}$
b. $\operatorname{Cos}-2 \pi-\operatorname{Sin} \frac{\pi}{2}$
3. a. Explain how you would use the graphs of $y=\operatorname{Cos} x$ and $y=\frac{1}{2}$, plotted on the same axes to solve the equation $\operatorname{Cos} x=\frac{1}{2}$.
b. Explain how you would use the graph of $y=\operatorname{Cos} x-\frac{1}{2}$ to solve $\operatorname{Cos} x=\frac{1}{2}$.
c. Explain how you would use the graphs in (a) and (b) to solve the equation $4 \operatorname{Cos} x=2$.
4. Solve for x if $0 \leq \mathrm{x}<360^{\circ}$.
a. $3 \operatorname{Sin} 2 \mathrm{x}=3$
b. $2 \operatorname{Cos} 2 x+1=0$
c. $2 \operatorname{Sin} \frac{1}{2} x=\sqrt{3}$
5. Solve algebraically for A if $0 \leq \mathrm{A}<2 \pi$.
a. $\left(\operatorname{Sin} \mathrm{A}-\frac{1}{2}\right)(\operatorname{Tan} \mathrm{A}+1)=0$
b. $\operatorname{Sin}^{2} 2 \mathrm{~A}+\operatorname{Sin} 2 \mathrm{~A}=0$
c. $4 \operatorname{Cos}^{2} \mathrm{~A}+2 \operatorname{Cos} \mathrm{~A}-2=0$
6. Find the general solution (solve over the real numbers) for each equation:
a. $\quad \operatorname{Sin}^{2} \mathrm{~A}-\frac{3}{4}=0$
b. $\cos ^{2} 3 \mathrm{~A}+\operatorname{Cos} 3 \mathrm{~A}=0$
c. $4 \cos ^{2} \mathrm{~A}+2 \cos \mathrm{~A}-2=0$
7. Solve for x if $0 \leq x<2 \pi$. (2 dec . places)
a. $4 \operatorname{Sin}^{2} \mathrm{x}-3 \operatorname{Sin} \mathrm{x}-1=0$
b. $2 \operatorname{Tan}^{2} x-3 \operatorname{Tan} x-5=0$
c. $12 \operatorname{Cos}^{2} x-\operatorname{Cos} x=6$
d. $\operatorname{Tan}^{2} x-2 \operatorname{Tan} x=15$
8. a. Solve $\operatorname{Sin} x-\frac{1}{3} x=0$ graphically giving your answer to 3 decimal places.
b. How can you use the graph in part (a) to determine the number of roots the equation $\frac{1}{3} \mathrm{x}-\operatorname{Sin} \mathrm{x}-1=0$ has?
9. The graph below shows the graphs of two functions $y=f(x)$ and $y=g(x)$.

a. Based on the graph, how many solutions do you expect for the equation $f(x)=g(x)$? For the equation $f(x)-g(x)=0$?
b. What single function can you graph, and then solve to help find the solutions of the equation $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$?
10. Ecologists have determined an equation that gives the number of owls, $n(t)$ in a provincial park as a function of time in years is:
$\mathrm{n}(\mathrm{t})=10 \operatorname{Cos}\left(2 \mathrm{t}-\frac{\pi}{4}\right)+50$
Determine the years when there are likely to be 55 owls.
11. The equation $x+\operatorname{Sin} x-3 \operatorname{Cos} x=0$ has how many solutions?

MA 12 LG 11 Review Sheet (Exponents \& Equations1)

Answer Key

Answer Key

1. a. $\frac{\pi}{6}$
b. $\frac{\pi}{6}$
c. $\frac{\pi}{3}$
d. $\frac{\pi}{4}$
2. a. $\frac{1}{2}$
b. 0
3. a. Find points of intersection
b. Find zeroes
c. Equation same as $\operatorname{Cos} x-\frac{1}{2}=0$
4. a. $45^{\circ}, 225^{\circ}$
b. $60,120^{\circ}, 240^{\circ}, 300^{\circ}$
c. $120^{\circ}, 240^{\circ}$
5. a. $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{3 \pi}{4}, \frac{7 \pi}{4}$
b. $0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, \frac{3 \pi}{4}, \frac{7 \pi}{4}$
c. $\frac{\pi}{3}, \frac{5 \pi}{3}, \pi$
6. a. $\frac{\pi}{3}+2 n \pi, \frac{2 \pi}{3}+2 n \pi, \frac{4 \pi}{3}+2 n \pi, \frac{5 \pi}{3}+2 n \pi$
b. $\frac{\pi}{6}+\frac{2 \mathrm{n} \pi}{3}, \frac{\pi}{2}+\frac{2 \mathrm{n} \pi}{3}, \frac{\pi}{3}+\frac{2 \mathrm{n} \pi}{3}$
c. $\frac{\pi}{3}+2 n \pi, \frac{5 \pi}{3}+2 n \pi, \pi+2 n \pi$
7. a. $1.57,3.39,6.03$
b. $1.19,2.36,4.33,5.50$
c. $0.72,2.30,3.98,5.56$
d. $1.37,1.89,4.51,5.03$
8. a. $-2.28,0,2.280$
b. $\operatorname{Sin} x-\frac{1}{3}=1$
(graph both $y=\operatorname{Sin} x-\frac{1}{3} \& y=1$ and find points of intersection)
