JAN 1991

1. Which one of the following functions could describe the graph illustrated?

A. $f(x)=(x-2)(x+1)(x+2)$
B. $f(x)=-(x-2)(x+1)(x+2)$
C. $f(x)=(x+2)(x-1)(x-2)$
D. $f(x)=-(x+2)(x-1)(x-2)$
2. If $2 x+1$ is a factor of a polynomial $P(x)$, which of the following must have a value of zero?
A. $P(1)$
B. $P(-1)$
C. $P\left(\frac{1}{2}\right)$
D. $P\left(-\frac{1}{2}\right)$
3. Which of the following approximates the zeros of the function shown?
A. $-2.2,1.6$
B. $-1.8,1.6$
C. $-2.2,-2,1.6$
D. $-1.8,-2,1.6$
4. Which graph below illustrates the solution set for the inequality $(x+2)(x-3)^{2} \geq 0$?

5. Given the graph of the function $y=P(x)$, how many positive zeros does the function $y=P(x-2)-1$ have?
A. 0
B. 2
C. 3
D. 4
6. Solve: $3 x^{3}-2 x^{2}-7 x-2=0$

JUNE 1991

7. Which of the following is a possible root of the equation $4 x^{4}+2 x^{3}+k x+7=0$, where k is an integer?
A. 2
B. 4
C. $\frac{7}{2}$
D. $\frac{2}{7}$
8. Given a polynomial $P(x)$, what condition must be true for $x-2$ to be factor of $P(x)$?
A. $P(2)=0$
B. $P(-2)=0$
C. $P(x)=2$
D. $P(x)=-2$
9. What is the quotient when $5 x^{3}-6 x^{2}+64$ is divided by $x+2$?
A. $5 x^{2}+4 x+8$
B. $5 x^{2}-16 x+32$
C. $5 x^{2}+4 x+72$
D. $5 x^{2}-16 x+96$
10. Select a cubic equation with roots $-1,1$ and $\frac{2}{3}$:
A. $2 x^{3}+3 x^{2}-2 x-3$
B. $2 x^{3}-3 x^{2}-2 x+3$
C. $3 x^{3}+2 x^{2}-3 x-2$
D. $3 x^{3}-2 x^{2}-3 x+2$
11. Given the graph of $y=P(x)$, which of the following best represents $y=x P(x)$?

A.

C.

D.

JAN 1992

12. If $x+7$ is a factor of a polynomial $p(x)$, which of the following must be true?
A. $p(x)=0$
B. $p(7)=0$
C. $p(-7)=0$
D. $p(x)=-7$
13. Using the Rational Zero Theorem, determine all possible rational roots of $2 x^{3}+x^{2}-5 x+3=0$.
A. $\pm 1, \pm 2$
B. $\pm 1, \pm 2, \pm 3$
C. $\pm 1, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm 3$
D. $\pm 1, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm 2$
14. What is the remainder when $x^{21}-1$ is divided by $x+1$?
A. -22
B. -2
C. -1
D. 0
15. What is the minimum degree of the polynomial function shown?
A. 1
B. 2
C. 3
D. 4
16. Which of the following is a factor of $x^{3}+5 x^{2}+2 x-8$?
A. $x^{2}+6 x+8$
B. $x^{2}+3 x+2$
C. $x-2$
D. $x-4$

17. Determine a polynomial inequality whose solution is graphed below:

A. $(x-1)(x+2)^{2} \leq 0$
B. $(x+1)(x-2)^{2} \leq 0$
C. $(x+1)(x-2)^{2} \geq 0$
D. $(x-1)(x-2)^{2} \geq 0$
18. Determine all real roots of the equation $x^{3}+x^{2}-5 x-5=0$.

JUNE 1992

19. Let $p(x)$ be a polynomial such that $p(-3)=0$. Which of the following must be a factor of $p(x)$?
A. x
B. $x-3$
C. $x+3$
D. $x^{2}-9$
20. Determine all possible rational roots of $2 x^{3}-5 x^{2}+3 x-5=0$.
A. $\pm 1, \pm 2$
B. $\pm 1, \pm 5$
C. $\pm 1, \pm 5, \pm \frac{1}{2}, \pm \frac{5}{2}$
D. $\pm 1, \pm 2, \pm \frac{1}{5}, \pm \frac{2}{5}$
21. Estimate the real zeros of the function shown:
A. 10
B. $-2,1.5,3.5$
C. $2,-1.5,-3.5$
D. $10,-2,1.5,3.5$

22. Determine the remainder when $p(x)=x^{28}-2 x^{5}+3$ is divided by $x-1$.
A. 2
B. 3
C. 4
D. 6
23. Using the graph of the polynomial function $f(x)$ shown, determine all values of x such that $f(x+3)>0$.
A. $-5<x<-2$ or $x>0$
B. $x<-5$ or $-2<x<0$
C. $-2<x<1$ or $x>3$
D. $1<x<4$ or $x>6$

24. A polynomial function $p(x)$, of degree 3 , has the real zeros $-2,1$ and 4 , and a y-intercept of 24 . Determine the value of $p(6)$.

JAN 1993

25. Determine a real zero of the function shown:
A. -2
B. 2
C. 3
D. 4

26. Determine all possible rational roots of $6 x^{3}-5 x^{2}-7 x-3=0$.
A. $\pm 1, \pm 3$
B. $\pm 1, \pm 2, \pm 3, \pm 6$
C. $\pm \frac{1}{3}, \pm \frac{2}{3}, \pm 1, \pm 2, \pm 3, \pm 6$
D. $\pm \frac{1}{6}, \pm \frac{1}{3}, \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm 3$
27. Determine the remainder if $x^{3}-2 x^{2}+3 x-7$ is divided by $x+1$.
A. -13
B. -9
C. -5
D. 5
28. Solve: $x^{3}+5 x^{2}+6 x=0$
A. $-2,-3$
B. $1,-6$
C. $0,-2,-3$
D. $0,1,-6$
29. Determine a polynomial equation that has roots ± 3 and 2 .
A. $x^{3}-2 x^{2}-9 x+18=0$
B. $x^{3}+2 x^{2}-9 x-18=0$
C. $x^{3}-2 x^{2}+9 x+18=0$
D. $x^{3}+2 x^{2}-9 x-18=0$
30. How many real roots are there for the polynomial equation $x\left(x^{2}-4\right)(x+3)\left(x^{2}+5\right)=0$?
A. 3
B. 4
C. 5
D. 6
31. Graph the solution of the inequality for $(x-3)(x+1)(x-1) \geq 0$

32. If the graph of the polynomial function shown is of the form $y=a x^{3}+b x^{2}+c x+d$ (where a, b, c, and d are constants), what are the conditions on a and d ?
A. $a>0, d=0$
B. $a>0, d=0$
C. $a<0, d=0$
D. $a<0, d=0$

JUNE 1993

33. Determine a possible equation of the inverse of the relation shown.
A. $y=x^{3}-3 x$
B. $y=3 x-x^{3}$
C. $y=x^{3}-9 x$
D. $y=9 x-x^{3}$
34. If a polynomial $p(x)$ is divided by $x-5$, what is the remainder?

A. $p(-5)$
B. $p(5)$
C. $p(x-5)$
D. $p(x+5)$
35. Estimate the real zeros of the function shown:
A. $-2.3,1.3,2.5$
B. $2.3,-1.3,-2.5$
C. $-2.7,1.3,2.5$
D. $2.7,-1.3,-2.5$

36. Determine a polynomial equation that has roots $\sqrt{2},-\sqrt{2}$ and 1 .
A. $x^{3}-x^{2}-4 x+4=0$
B. $x^{3}+x^{2}-4 x-4=0$
C. $x^{3}+x^{2}-2 x-2=0$
D. $x^{3}-x^{2}-2 x+2=0$
37. Determine the remainder when $6 x^{3}-11 x^{2}+14 x-5$ is divided by $2 x^{2}-7 x+3$.
A. $-107 x-53$
B. $-107 x+43$
C. $40 x-20$
D. 20
38. What is the minimum degree of a polynomial inequality whose solution is shown below?

A. 3
B. 4
C. 5
D. 6
39. Solve: $2 x^{3}+3 x^{2}-11 x-6=0$

JAN 1994

40. According to the Rational Root Theorem, what are the possible rational roots of $2 x^{4}+3 x^{2}-7 x+3=0$?
A. $\pm 1, \pm 3$
B. $\pm 1, \pm 2, \pm \frac{1}{3}, \pm \frac{2}{3}$
C. $\pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}$
D. $\pm 1, \pm 2, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}$
41. Which equation could represent the following graph?
A. $y=(x+2)^{2}(x-1)$
B. $y=(x+2)^{2}(x+1)$
C. $y=(x-2)^{2}(x-1)$
D. $y=(x-2)^{2}(x+1)$

42. Determine the quotient when $x^{3}-2 x^{2}-9$ is divided by $x-3$.
A. $x^{2}+5 x+15$
B. $x^{2}+x-6$
C. $x^{2}-5 x+6$
D. $x^{2}+x+3$
43. What value of k would make $x+2$ a factor of $2 x^{3}-5 x^{2}-2 k x+8$?
A. -7
B. -1
C. 1
D. 7
44. From the graph of $y=f(x)$ shown, find the approximate solutions to $f(x)=2$.
A. -4.2
B. 8.6
C. $-4.5,0.3,2.5$
D. $-4.2,-0.5,3.0$

45. Determine the graph of the solution set of the inequality $x(x-1)^{n}(x+2)^{m}>0$, if n is an even positive integer and m is an odd positive integer.
A.

B.

C.

D.

46. Solve: $2 x^{3}-x^{2}-8 x+4=0$

JUNE 1994

47. According to the Rational Root Theorem, which one of the following is a possible root of the equation $8 x^{4}+19 x^{3}-13 x^{2}+7 x-3=0$?
A. 2
B. 3
C. 4
D. 8
48. Which graph could represent a polynomial function of degree 5?
A.

B.

C.

D.

49. When $4 x^{2}+2 k x-5$ is divided by $x+2$ the remainder is 3 . What is the value of k ?
A. -6
B. -2
C. 2
D. $\frac{11}{4}$
50. Solve: $x^{3}-2 x^{2}-5 x+6=0$
A. $1,2,-3$
B. $1,-2,3$
C. $-1,2,-3$
D. $-1,-2,3$
51. Determine the remainder when $p(x)=4 x^{3}-6 x^{2}+4 x-3$ is divided by $2 x-1$.
A. -7
B. -4
C. -3
D. -2
52. Determine a polynomial equation that has roots of $\sqrt{3},-\sqrt{3}$ and 2 .
A. $x^{3}-2 x^{2}-3 x+6=0$
B. $x^{3}+2 x^{2}-3 x-6=0$
C. $x^{3}-2 x^{2}-9 x+18=0$
D. $x^{3}+2 x^{2}-9 x-18=0$
53. Which polynomial inequality has the solution $-3<x<-2$ or $x>1$?
A. $(x+3)(x+2)(x-1)<0$
B. $(x+3)(x+2)(x-1)>0$
C. $(x-3)(x-2)(x+1)<0$
D. $(x-3)(x-2)(x+1)>0$
54. The graph of a cubic polynomial function, $y=f(x)$, is shown. Determine the equation of $y=f(x)-4$.
A. $y=(x+2)^{2}(x+1)$
B. $y=(x+2)^{2}(x-1)$
C. $y=2(x+2)^{2}(x+1)$
D. $y=2(x+2)^{2}(x-1)$

JAN 1995

55. Determine the minimum degree of the polynomial function shown.
A. 3
B. 4
C. 5
D. 6
56. If $p(x)=x^{3}-3 x^{2}+k x+1$, determine k if $p(3)=-5$.
A. -12
B. -2
C. 4
D. 16
57. Determine all real roots of the equation $\left(x^{2}-4\right)\left(x^{2}+9\right)(x-5)^{2}=0$.
A. $2,3,5$
B. $\pm 2,5$
C. $\pm 2, \pm 3,5$
D. $\pm 2, \pm 3, \pm 5$
58. The polynomial equation $x^{3}-a x^{2}+b x-c=0$, where a, b and c are integers, has 6 as one of its roots. According to the Rational Root Theorem, which of the following could be a value of c ?
A. 2
B. 3
C. 9
D. 18
59. Determine the quotient and remainder: $\left(t^{4}+3 t^{3}+5 t^{2}+21 t-14\right) \div\left(t^{2}+3 t-2\right)$
A. quotient: $t^{2}+7$, remainder: 0
B. quotient: $t^{2}+7$, remainder: -28
C. quotient: $t^{2}+3$, remainder: $12 t-8$
D. quotient: $t^{2}+3$, remainder: $30 t-20$
60. Find the remainder when $x^{39}-3 x^{15}-2 x+1$ is divided by $x-1$.
A. -3
B. -1
C. 1
D. 5
61. Determine all real solutions for $x^{3}-2 x^{2}-5 x+6=0$.
A. $-1,3,-2$
B. $-1,-3,2$
C. $1,3,-2$
D. $1,-3,2$
62. Solve the inequality: $x(x-2)\left(x^{2}-4\right)<0$
A.

B.

C.

D.

63. A square piece of cardboard 10 cm by 10 cm will have equal squares with sides of length $x \mathrm{~cm}$ cut from each corner. The sides will then be folded up to create a bo x with no top. Determine the value of x that will give the bo x a maximum volume.

JUNE 1995

64. If $x+8$ is a factor of the polynomial $P(x)$, which of the following must be true?
A. $P(-8)=0$
B. $P(8)=0$
C. $P(x)=8$
D. $P(x)=-8$
65. What is the maximum number of real roots that a polynomial equation can have if its degree is 6 ?
A. 3
B. 5
C. 6
D. 7
66. According to the Rational Zero Theorem, which number is a possible zero of the function $f(x)=6 x^{3}+7 x^{2}-3 x+4$?
A. $-\frac{3}{2}$
B. $\frac{1}{4}$
C. $\frac{1}{3}$
D. 3
67. Determine the remainder when $2 x^{4}+4 x^{3}-5 x^{2}+8$ is divided by $x-2$.
A. -12
B. 18
C. 30
D. 52
68. Which graph is the best representation of $y=a x^{3}+b x^{2}+c x-24$ where $a>0$?
A

B.

C.

D.

69. Determine all the real zeros of the function $P(x)=2 x\left(x^{2}+9\right)\left(x^{2}-2\right)$.
A. $0, \pm \sqrt{2}$
B. $0, \pm 3$
C. $0, \sqrt{2}, 3$
D. $0, \pm \sqrt{2}, \pm 3$
70. Solve the inequality: $(x+2)^{2}(x-2)(x-4)<0$
A. $x<-2$
B. $-2<x<4$
C. $2<x<4$
D. $x<2$ or $x>4$
71. The graph of the function $f(x)$ is shown. If $g(x)=3 f(x)$, determine the zeros of $g(x)$.
A. $-2,2,4$
B. $-6,6,12$
C. $-6,9$
D. $-2,3$

JAN 1996

72. According to the Rational Root Theorem, determine all possible rational roots of $3 x^{3}-8 x^{2}+16 x-4=0$.
A. $\pm 1, \pm 3$
B. $\pm 1, \pm 2, \pm 4$
C. $\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, 3, \pm \frac{3}{2}, \pm \frac{3}{4}$
D. $\pm 1, \pm \frac{1}{3}, 2, \pm \frac{2}{3}, \pm 4, \pm \frac{4}{3}$
73. If $p(x)$ is a polynomial function where $p(-2)=5$, then which of the following could not be a zero of this function?
A. -5
B. -2
C. 2
D. 5
74. Find the remainder when $x^{3}-2 x^{2}+5$ is divided by $x^{2}+x-1$.
A. 4
B. $2 x+2$
C. $2 x+4$
D. $4 x+2$
75. Solve for $x: x^{3}-2 x^{2}-5 x+6=0$
A. $-1,-2,3$
B. $-1,2,3$
C. $1,-2,3$
D. $1,2,-3$
76. Determine the value of k such that $x+2$ is a factor of the polynomial $2 x^{3}+5 x^{2}+k x-12$.
A. -12
B. -4
C. 4
D. 12
77. Which graph best represents $y=-x(x+3)^{2}(x-3)^{3}$?
A.

B.

C.

D.

78. Given that $p(x)$ and $f(x)$ are polynomial functions such that $p(x)=x f(x)+c$, determine c if the graph of $p(x)$ is shown.
A. p
B. t
C. r
D. s

JUNE 1996

79. If the polynomial $p(x)$ is divided by $x-6$, which of the following represents the remainder?
A. $p(6)$
B. $p(-6)$
C. $p(x)+6$
D. $p(0)$
80. Determine the value of k if 2 is a zero of the function $p(x)=x^{3}-7 x^{2}+k x+12$.
A. $k=-16$
B. $k=4$
C. $k=5$
D. $k=16$
81. Determine the quotient when $x^{3}-12 x^{2}+9 x-5$ is divided by $x-3$.
A. $x^{2}-9 x-16$
B. $x^{2}-9 x-18$
C. $x^{2}-15 x+54$
D. $x^{2}+9 x+36$
82. If $x+4$ is a factor of the polynomial $m x^{3}-11 x^{2}-10 x+n$, where m and n are integers, according to the Rational Root Theorem, which of the following could be a value for n ?
A. 2
B. 6
C. 8
D. 10
83. Solve: $x^{3}-4 x^{2}>12 x$
A. $-2<x<6$
B. $x<-2$ or $x>6$
C. $-2<x<0$ or $x>6$
D. $-6<x<0$ or $x>2$
84. Which graph is a possible representation of $y=a x^{4}+b x^{3}+c x-6$, where a is a negative integer?
A.

B.

c.

D.

85. Determine a polynomial equation that has the following roots: $2, \pm \sqrt{5}$
A. $x^{3}+2 x^{2}-5 x-10=0$
B. $x^{3}-2 x^{2}+5 x-10=0$
C. $x^{3}-2 x^{2}-5 x+10=0$
D. $x^{3}+2 x^{2}+5 x+10=0$
86. The graph of the cubic polynomial function $p(x)$ is given below. Which of the following functions must have 3 unequal real zeros?
A. $p(x)-7$
B. $p(x)-3$
C. $p(x-3)$
D. $p(x-7)$

JAN 1997

87. If $x+4$ is a factor of the polynomial $p(x)$, then which of the following must be true?
A. $p(-4)=0$
B. $p(4)=0$
C. $p(0)=-4$
D. $p(0)=4$
88. According to the Rational Root Theorem, which number could not be a root of the equation $4 x^{3}+k x^{2}+3 x-3=0$, where k is an integer?
A. -3
B. -1
C. $\frac{4}{3}$
D. $\frac{3}{2}$
89. What is the minimum degree of the polynomial function graphed below?
A. 3
B. 4
C. 5
D. 7

90. When $x^{3}+x^{2}-k x-5$ is divided by $x-2$, the remainder is 1 . Find the value of k.
A. 3
B. 3.5
C. 4.5
D. 5
91. Determine a polynomial equation that has the roots $\pm 2, \pm \sqrt{7}$.
A. $x^{4}-11 x^{2}+28=0$
B. $x^{4}+11 x^{2}+28=0$
C. $x^{4}-9 x^{2}+14=0$
D. $x^{4}+9 x^{2}+14=0$
92. Find the remainder for the following division. $x ^ { 2 } + 2 x - 4 \longdiv { x ^ { 4 } + 2 x ^ { 3 } - 3 x ^ { 2 } + 2 x - 6 }$
A. 2
B. 10
C. $4 x+2$
D. $16 x-22$
93. Determine the real $\operatorname{root}(\mathrm{s}): 2 x^{3}-3 x^{2}+6 x-9=0$
A. $-\frac{3}{2}$
B. $\frac{3}{2}$
C. $-\frac{3}{2}, \pm \sqrt{3}$
D. $\frac{3}{2}, \pm \sqrt{3}$
94. Use the graph of the function $y=p(x)$ shown to solve the equation $p(x-5)+6=0$.
A. -4
B. -1
C. 1
D. 4

JUNE 1997

95. According to the Rational Root Theorem, list all possible rational roots of $2 x^{8}-5 x^{3}+6 x^{2}-4=0$.
A. $\pm 1, \pm 2, \pm 4$
B. $\pm \frac{1}{2}, \pm 1, \pm 2, \pm 4$
C. $\pm \frac{1}{4}, \pm \frac{1}{2}, \pm 1, \pm 2$
D. $\pm \frac{1}{2}, \pm 1, \pm 2, \pm 4, \pm 8$
96. Determine the remainder when $6 x^{3}-11 x^{2}+14 x-5$ is divided by $2 x^{2}-7 x+3$.
A. $-107 x-53$
B. $-107 x+43$
C. $40 x-20$
D. 20
97. The following graph represents the polynomial function $y=A x^{4}+B x^{3}+C x^{2}+D x+E$. What conditions must be satisfied by A and E ?
A. $A<0$ and $E<0$
B. $A<0$ and $E>0$
C. $A>0$ and $E<0$
D. $A>0$ and $E>0$

98. Which polynomial inequality describes the solution shown?

A. $(x-1)(x+2)(x+3) \geq 0$
B. $(x-1)(x+2)(x+3) \leq 0$
C. $(x+1)(x-2)(x-3) \geq 0$
D. $(x+1)(x-2)(x-3) \leq 0$
99. For the polynomial function $p(x)=a x^{3}+b x-3, p(-1)=4$. Determine the value of $p(1)$.
A. -10
B. -4
C. 4
D. 10
100. If -2 is a root of $2 x^{3}+k x^{2}-11 x+6=0$, determine the other two roots.

JAN 1998

101. Given a polynomial $p(x)$, what condition must be true for $x-2$ to be a factor of $p(x)$?
A. $p(2)=0$
B. $p(-2)=0$
C. $p(x)=2$
D. $p(x)=-2$
102. According to the Rational Root Theorem, give all possible rational roots of $2 x^{3}-5 x^{2}+12 x-6=0$.
A. $\pm 1, \pm 2, \pm 3, \pm 6$
B. $\pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{6}$
C. $\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{2}{3}$
D. $\pm 1, \pm 2, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{6}$
103. What is the quotient when $5 x^{3}-6 x^{2}+64$ is divided by $x+2$?
A. $5 x^{2}+4 x+8$
B. $5 x^{2}-16 x+32$
C. $5 x^{2}+4 x+72$
D. $5 x^{2}-16 x+96$
104. Find the remainder when $3 x^{45}+4 x^{8}-5 x^{3}+2$ is divided by $x+1$.
A. -10
B. -2
C. 4
D. 8
105. What is the least number of real zeros that a polynomial function can have if its degree is 5 ?
A. 0
B. 1
C. 3
D. 5
106. Determine the real roots: $x^{3}+3 x^{2}-6 x-8=0$
A. $-4,-1,2$
B. $-4,1,2$
C. $-2,1,4$
D. $-1,2,4$
107. Solve the inequality: $(x+5)(x-2)(6-x)>0$
A. $x<-5$ or $x>6$
B. $x<-5$ or $x>2$
C. $-5<x<2$ or $x>6$
D. $x<-5$ or $2<x<6$
108. Determine an equation of the polynomial function $y=f(x)$ graphed below.
A. $f(x)=2(x+2)^{2}(x-1)(x-3)$
B. $f(x)=4(x+2)^{2}(x-1)(x-3)$
C. $f(x)=2(x-2)^{2}(x+1)(x+3)$
D. $f(x)=4(x+2)(x-1)(x-3)$

JUNE 1998

109. According to the Rational Root Theorem, determine all possible rational roots of $5 x^{3}-4 x^{2}+15=0$.
A. $\pm 1, \pm 5$
B. $\pm 1, \pm 3, \pm 5, \pm 15$
C. $\pm 1, \pm 3, \pm 5, \pm 15, \pm \frac{1}{5}, \pm \frac{3}{5}$
D. $\pm 1, \pm 5, \pm \frac{1}{3}, \pm \frac{5}{3}, \pm \frac{1}{5}, \pm \frac{1}{15}$
110. If $3 x-1$ is a factor of $p(x)$, which of the following must have a value of 0 ?
A. $p\left(\frac{1}{3}\right)$
B. $p\left(-\frac{1}{3}\right)$
C. $p(-1)$
D. $p(1)$
111. How many real roots are there for the polynomial equation $x\left(x^{2}-4\right)\left(x^{2}+9\right)=0$?
A. 1
B. 2
C. 3
D. 5
112. Factor: $x^{3}-2 x^{2}-5 x+6$
A. $(x+1)(x-2)(x+3)$
B. $(x+1)(x+2)(x-3)$
C. $(x-1)(x-2)(x+3)$
D. $(x-1)(x+2)(x-3)$
113. Determine the quotient when $2 x^{3}-5 x^{2}+7 x+3$ is divided by $2 x+1$.
A. $x^{2}-3 x+4$
B. $x^{2}-3 x+5$
C. $x^{2}-2 x-2$
D. $x^{2}-2 x+2$
114. If the cubic polynomial function $f(x)=k(x-1)(x+2)(x-3)$ passes through the point $(2,6)$, determine the value of k.
A. $-\frac{3}{2}$
B. $-\frac{2}{3}$
C. $\frac{2}{3}$
D. $\frac{3}{2}$
115. Solve: $(x+5)(x+1)(3-x)<0$
A.

B.

C.

D.

116. Given the graph of $y=f(x)$, which of the following best represents the graph of $y=(x+3) f(x)$?
A.

B.

C.

D.

JAN 1999

117. If 5 is a zero of the polynomial $P(x)$, then which of the following must be true?
A. $P(x)=5$
B. $P(5)=0$
C. $P(0)=5$
D. $P(-5)=0$
118. According to the Rational Root Theorem, determine all possible rational roots of $4 x^{5}-3 x^{3}+6 x-2=0$.
A. $\pm 1, \pm 2$
B. $\pm 1, \pm 2, \pm 4, \pm \frac{1}{2}$
C. $\pm 1, \pm 2, \pm \frac{1}{2}, \pm \frac{1}{4}$
D. $\pm 1, \pm 2, \pm 4, \pm \frac{1}{2}, \pm \frac{1}{4}$
119. Determine the remainder when $x^{12}-2 x^{7}+6 x^{2}-4$ is divided by $x+1$.
A. 0
B. 1
C. 4
D. 5
120. Which of the following is a real zero of the polynomial function $f(x)=x^{3}-3 x+3$?
A. -2.10
B. -2.00
C. 0.82
D. 3.00
121. The graph of a polynomial function $y=P(x)$ is shown below. If $f(x)=P(x)+k$, determine all values of k such that $f(x)$ will have two unequal real zeros and no other real zeros.
A. $k<-3$ or $k>2$
B. $2<k<5$
C. $-2<k<5$
D. $2<k<5$ or $k<-3$
122. Solve: $x^{3}-8 x^{2} \geq-4 x+20$

JUNE 1999

123. When the polynomial $p(x)$ is divided by $x-4$, the remainder is 6 . Which of the following must be true?
A. $p(4)=6$
B. $p(-4)=6$
C. $p(6)=4$
D. $p(-6)=4$
124. Solve: $x^{3}-7 x-6=0$
A. $-1,-2,3$
B. $-1,2,-3$
C. $1,-2,3$
D. $1,2,-3$
125. Determine the largest root of $x^{3}-30 x^{2}+235 x-430=0$.
A. 2.64
B. 8.74
C. 18.62
D. 18.75
126. According to the Rational Root Theorem, which of the following equations has possible rational roots of $\pm 1, \pm 2, \pm \frac{1}{3}, \pm \frac{2}{3}$?
A. $3 x^{3}-4 x^{2}+5 x+1=0$
B. $6 x^{3}-4 x^{2}+5 x+1=0$
C. $2 x^{3}-4 x^{2}+5 x+3=0$
D. $3 x^{3}-4 x^{2}+5 x+2=0$
127. Which of the following is a polynomial function with zeros of $-\sqrt{2}, \sqrt{2}$ and -1 ?
A. $P(x)=x^{3}-x^{2}-2 x+2$
B. $P(x)=x^{3}+x^{2}-2 x-2$
C. $P(x)=x^{3}-x^{2}-4 x+4$
D. $P(x)=x^{3}+x^{2}-4 x-4$
128. The graph of the polynomial function $P(x)=a x^{3}+b x^{2}+c x+d$, where a, b, c and d are constants, is shown. What are the conditions on c and d ?
A. $c=0, d=0$
B. $c=0, d>0$
C. $c>0, d=0$
D. $c \neq 0, d=0$

129. The graph of the cubic polynomial function $y=P(x)$ is shown below. Determine the zeros of $y=x P(-x)$.
A. $-5,-1,0,1$
B. $-5,-1,1$
C. $-1,0,1,5$
D. $-1,1,5$

130. Solve: $x^{3}-8 x^{2}>18 x-20$

JAN 2000

131. According to the Rational Root Theorem, determine all possible rational roots of $5 x^{3}-3 x^{2}+x-2=0$.
A. $\pm 1, \pm 2$
B. $\pm 1, \pm 5$
C. $\pm 1, \pm 2, \pm \frac{1}{2}, \pm \frac{5}{2}$
D. $\pm 1, \pm 2, \pm \frac{1}{5}, \pm \frac{2}{5}$
132. How many different real roots are there for the polynomial equation $x(x-3)\left(x^{2}+6\right)=0$?
A. 1
B. 2
C. 3
D. 4
133. Determine the remainder when $3 t^{3}-7 t^{2}-11 t+20$ is divided by $t^{2}+2 t-4$
A. $3 t-13$
B. $-25 t+24$
C. $-25 t+72$
D. $27 t-32$
134. A cubic polynomial function that passes through the point $(3,24)$ has zeros at $5,-1$ and -3 . Determine an equation of this function.
A. $y=-2(x-5)(x+1)(x+3)$
B. $y=-\frac{1}{2}(x-5)(x+1)(x+3)$
C. $y=\frac{1}{2}(x-5)(x+1)(x+3)$
D. $y=2(x-5)(x+1)(x+3)$
135. Solve the inequality: $-(x-3)(x+2)^{2}<0$
A. \qquad
B.

C.

D.

136. The graph of the polynomial function $y=f(x)$ is shown.

Find the remainder when $f(x)$ is divided by $(x-2)$.
A. -6
B. 0
C. 1
D. 6
137. Solve: $x^{3}+10 x^{2}=22-10 x$

JUNE 2000

138. According to the Rational Root Theorem, determine all possible rational roots of $4 x^{3}-7 x^{2}+3 x-2=0$.
A. $\pm 1, \pm 2$
B. $\pm 1, \pm 2, \pm 4$
C. $\pm 1, \pm 2, \pm 4, \pm \frac{1}{2}$
D. $\pm 1, \pm 2, \pm \frac{1}{4}, \pm \frac{1}{2}$
139. What is the minimum degree of the polynomial function shown?
A. 2
B. 3
C. 4
D. 5

140. Solve: $2 x^{3}+5=5 x^{2}+5 x$
A. -1.88
B. -0.58
C. $-1.22,0.67,3.05$
D. $-1.00,0.60,3.00$
141. Solve the following inequality for x, given that a, b and c are constants such that $a<b<c$.

$$
(x-a)^{3}(x-b)^{2}(x-c)>0
$$

A. $x>c$
B. $x<a$ or $x>c$
C. $x<c, x \neq a, x \neq b$
D. $a<x<c, x \neq b$
142. Determine all values for k such that $y=2 x^{3}+3 x^{2}-12 x+k$ has only one real zero.
A. $k<-20$
B. $k>7$
C. $-20<k<7$
D. $k<-20$ or $k>7$
143. When $2 x^{3}-8 x^{2}+k x+18$ is divided by $x+2$, the remainder is -14 . Find k, then find all real roots of $2 x^{3}-8 x^{2}+k x+18=0$.

JAN 2001

144. Which expression represents the remainder when the polynomial $P(x)$ is divided by $x-9$?
A. $P(9)$
B. $P(-9)$
C. $P(0)$
D. $P(x-9)$
145. According to the Rational Root Theorem, which of the following is a possible root of the equation $5 x^{3}+m x^{2}+n x+20=0$, where m and n are integers?
A. $\frac{1}{10}$
B. $\frac{1}{5}$
C. $\frac{1}{4}$
D. $\frac{1}{2}$
146. Determine the quotient when $x^{4}-8 x^{2}+2 x-7$ is divided by $x+3$.
A. $x^{2}-5 x-13$
B. $x^{2}-11 x+35$
C. $x^{3}-3 x^{2}+x-1$
D. $x^{3}+3 x^{2}+x+5$
147. Determine the value of k if $x-2$ is a factor of the polynomial $x^{3}-4 x^{2}+k x+6$.
A. -9
B. -1
C. 1
D. 9
148. Solve $(x+a)^{2}(x+b)(x+c)<0$, where a, b, c are real number constants and $0<a<b<c$.
A. $b<x<c$
B. $-b<x<-c$
C. $-c<x<-b$
D. $-b<x<-a, x<-c$

(1)
149. Solve: $x^{3}-15 x^{2}=-10 x-30$

JUNE 2001

150. Determine the number of real zeros of the function shown.
A. 1
B. 2
C. 3
D. 4
151. Find the quotient when $2 x^{3}-3 x^{2}+2 x-8$ is divided by $x+1$.

A. $x^{2}-2 x$
B. $x^{2}-4 x+6$
C. $2 x^{2}-x+1$
D. $2 x^{2}-5 x+7$
152. The polynomial equation $m x^{3}+7 x^{2}-3 x+n=0$, where m and n are integers, has a root of $\frac{4}{9}$. According to the Rational Root Theorem, which of the following could be a value for m ?
A. 2
B. 4
C. 6
D. 18
153. Solve: $x^{3}<x$
A. $x<0, x>1$
B. $-1<x<1$
C. $-1<x<0, x>1$
D. $x<-1,0<x<1$
(目)154. Solve: $x^{3}+2 x^{2}-104 x+192=30$
A. $1.65,8.24$
B. $2.37,7.73$
C. $-12.11,2.37,7.73$
D. $-11.89,1.65,8.24$
154. The points $(-2,0),(0,5)$ and $(2,-4)$ are on the graph of a third degree polynomial function, $y=P(x)$. If $P(x)$ is divided by $x-2$, determine the remainder.
A. -4
B. 0
C. 4
D. 5
155. A cubic polynomial function has a double zero at -2 and a single zero at 3 . If this function passes through the point $(4,-24)$, determine an equation of the function. Answer may be left in factored form.

ADDITIONAL QUESTIONS

157. What numbers should replace p and q in the incomplete synthetic division shown below?

A. $p=-5, q=-3$
B. $p=-5, q=3$
C. $p=5, q=-3$
D. $p=5, q=3$
158. Determine the coefficient of x in the quotient when $2 x^{4}-7 x^{3}+9 x^{2}+2 x-8$ is divided by $x^{2}-3 x+4$.
A. -13
B. -1
C. 1
D. 13
159. Graph the solution to $(x+1)(x-2)^{2}(x+3)^{3} \leq 0$.
A.

B.

C.

D.

160. Find a polynomial equation of lowest degree with integral coefficients such that one root of $f(x)=0$ is $\sqrt{2}+\sqrt{3}$.
161. Given the following table of values for the polynomial function $y=f(x)$, determine the minimum number of zeros for $f(x)$.
A. 1
B. 2
C. 3
D. 4

x	y
-3	-15
-2	-12
-1	2
0	3
1	5
2	-7
3	-19

162. When $x^{4}+k x^{2}-5$ is divided by $x^{2}+1$, the remainder is -6 . Find the value of k.
A. -2
B. 0
C. 1
D. 2
163. A polynomial function of degree 3 has zeros $-2,2,4$, and passes through the point ($3,-25$). Determine an equation of the function. (Answer may be left in factored form.)
164. Determine the cubic polynomial function which has zeros of $-1,2$ and 3 , and goes through the point $(4,6)$.
A. $f(x)=(x+1)(x-2)(x-3)$
B. $f(x)=\frac{3}{5}(x+1)(x-2)(x-3)$
C. $f(x)=(x-1)(x+2)(x+3)$
D. $f(x)=\frac{1}{21}(x-1)(x+2)(x+3)$
165. If $p(x)=(x-2) q(x)+r$, determine $p(2)$.
A. $q(2)$
B. $q(-2)$
C. $-r$
D. r
166. A polynomial function of degree 3 has zeros $5,3,-1$, and passes through the point (2, -6). Determine an equation of this function. (Answer may be left in factored form.)
167. Determine a factor of degree 2 of the polynomial $p(x)$ if $p(3)=0$ and $p(-4)=0$.
A. $x^{2}+x-12$
B. $x^{2}-x+12$
C. $x^{2}-x-12$
D. $x^{2}+x+12$
168. Determine the values of k for which $\frac{1}{3}$ is a zero of $p(x)=-9 x^{3}+3 x^{2}-3 k x+k^{3}$.
A. $-2,-1,0$
B. $-2,0,1$
C. $-1,0,1$
D. $-1,0,2$
169. Determine the polynomial function of degree 3 , with zeros of $-2,0$, and 3 , that passes through the point $(2,5)$. Answer may be left in factored form.
170. Determine the number of rational roots for the equation $x^{5}-2 x-1=0$.
A. 1
B. 2
C. 3
D. 5
171. When a polynomial $P(x)$ is divided by $x+4$, the remainder is 5 . Which point must be on the graph of the function $y=P(x)$?
A. $(-4,5)$
B. $(5,-4)$
C. $(-4,-5)$
D. $(-5,-4)$
172. A polynomial function of degree 3 has a zero of -1 and a double zero of 4 . Determine this function if it passes through the point $(1,10)$. Answer may be left in factored form.
173. If $x+2$ is a factor of the polynomial $P(x)=2 x^{3}+k x^{2}-32 x-4 k^{2}$, determine all possible values of k.
174. Solve the following inequality: $x^{3}-3 x^{2}-x>2 x-4$
(迸) 175. Determine the range of the function $f(x)=x^{4}-3 x^{3}-8$.
A. $y \geq-18.81$
B. $y \geq-16.54$
C. $y \geq-8$
D. all real numbers
175. Determine the cubic polynomial function with zeros 1,2 , and -3 that passes through $(3,-10)$. (Answer may be left in factored form.)
176. The function $H(x)$ is the product of a 3rd degree polynomial function and a 2 nd degree polynomial function. What is the maximum number of zeros of $H(x)$?
A. 2
B. 3
C. 5
D. 6
177. Which graph could represent $f(x)=x(a-x)(x-b)^{2}(x-c)^{3}$, where a, b and c are constants?

178. Solve: $x^{4}-x^{3} \geq 8 x^{2}+2$
179. If the polynomial $p(x)=a x^{2}+b x-6$ is divided by $(x-1)$, the remainder is -9 . When $p(x)$ is divided by $(x+2)$, the remainder is 12 . Find the value of b.
A. -5
B. -2
C. 2
D. 5
180. If 2 is a root of the polynomial equation $6 x^{3}+k x^{2}+x+2=0$, determine the other roots.

POLYNOMIALS

			$x=-2, \frac{1}{2}, 2$	91	A	139	D
1	D	46		92	B	140	C
2	D			93	B	141	B
3	B	47	B	94	C	142	D
4	A	48	D	95	B	143	-1.66, 1.22, 4.44
5	C	49	C	96	C	144	A
6	$x=-1,-\frac{1}{3}, 2$	50	B	97	B	145	B
		51	D	98	D	146	C
7	C	52	A	99	A	147	C
8	A	53	B	100	$-2.48<x<0.83$ or $x>9.65$	148	C
9	B	54	D	101	A	149	1.09, 1.95, 14.14
10	D	55	D	102	C	150	B
11	C	56	B	103	B	151	D
12	C	57	B	104	D	152	D
13	C	58	D	105	B	153	D
14	B	59	A	106	A	154	D
15	C	60	A	107	D	155	A
16	A	61	C	108	A	156	$y=-\frac{2}{-}(x+2)^{2}(x-3)$
17	B	62	A	109	C		$y=-\frac{-}{3}(x+2)(x-3)$
18	$-1 \pm \sqrt{5}$	63	$x=\frac{5}{3} \mathrm{~cm}$	110	A	157	A
19	C		3	111	C	158	B
20	C	64	A	112	D	159	D
21	B	65	C	113	B	160	$x^{4}-10 x^{2}+1=0$
22	D	66	C	114	A	161	B
23	A	67	D	115	D	162	D
24	240	68	D	116	D	163	$f(x)=5(x-2)(x+2)(x-4)$
25	A	69	A	117	B	164	B
26	D	70	C	118	C	165	$p(x)=-\frac{2}{3}(x-5)(x-3)(x+1)$
27	A	71	A	119	D		
28	C	72	D	120	A	166	D
29	A	73	B	121	D	167	A
30	B	74	D	122	$x \geq 7.82$	168	C
31	B	75	C	123	A	169	$y=-\frac{5}{8} x(x+2)(x-3)$
32	D	76	B	124	A		$y=-\frac{1}{8} x(x+2)(x-3)$
33	D	77	C	125	C	170	A
34	A	78	B	126	D	171	A
35	A	79	A	127	B	172	$y=\frac{5}{9}(x+1)(x-4)^{2}$
36	D	80	B	128	A		$y=\frac{9}{9}(x+1)(x$
37	C	81	B	129	C	173	D
38	C	82	C	130	$-2.48<x<0.83$ or $x>9.65$	174	$-1.36<x<0.83$ or $x>3.53$
39	$x=-3,-\frac{1}{2}, 2$	83	C	131	D	175	B
		84	B	132	B	176	$\frac{5}{}(x-1)(x-2)(x+3)$
40	C	85	C	133	D		$\frac{-1}{6}(x-1)(x-2)$
41	A	86	B	134	B	177	C
42	D	87	A	135	A	178	B
43	D	88	C	136	A	179	$x \leq-2.43$ or $x \geq 3.40$
44	D	89	C	137	-8.52, -2.51, 1.03	180	A
45	B	90	A	138	D	181	$x=-\frac{1}{3}, \frac{1}{2}$

