1. Which one of the following functions could describe the graph illustrated?

- 2. If 2x + 1 is a factor of a polynomial P(x), which of the following must have a value of zero? A. P(1) B. P(-1) C. $P\left(\frac{1}{2}\right)$ D. $P\left(-\frac{1}{2}\right)$
- 3. Which of the following approximates the zeros of the function shown? A. -2.2, 1.6 B. -1.8, 1.6 C. -2.2, -2, 1.6 D. -1.8, -2, 1.6
- 4. Which graph below illustrates the solution set for the inequality $(x+2)(x-3)^2 \ge 0$?

- 5. Given the graph of the function y = P(x), how many positive zeros does the function y = P(x 2) 1 have?
 - A. 0 B. 2 C. 3 D. 4

6. Solve: $3x^3 - 2x^2 - 7x - 2 = 0$

JUNE 1991

- 7. Which of the following is a possible root of the equation $4x^4 + 2x^3 + kx + 7 = 0$, where k is an integer ?
 - A. 2 B. 4 C. $\frac{7}{2}$ D. $\frac{2}{7}$
- 8. Given a polynomial P(x), what condition must be true for x 2 to be factor of P(x)?

A. P(2) = 0 B. P(-2) = 0 C. P(x) = 2 D. P(x) = -2

- 9. What is the quotient when $5x^3 6x^2 + 64$ is divided by x + 2?
 - A. $5x^2 + 4x + 8$ B. $5x^2 - 16x + 32$ C. $5x^2 + 4x + 72$ D. $5x^2 - 16x + 96$

10. Select a cubic equation with roots -1, 1 and $\frac{2}{3}$: A. $2x^3 + 3x^2 - 2x - 3$ B. $2x^3 - 3x^2 - 2x + 3$ C. $3x^3 + 2x^2 - 3x - 2$ D. $3x^3 - 2x^2 - 3x + 2$

12. If x + 7 is a factor of a polynomial p(x), which of the following must be true?

A. p(x) = 0 B. p(7) = 0 C. p(-7) = 0 D. p(x) = -7

13. Using the Rational Zero Theorem, determine all possible rational roots of $2x^3 + x^2 - 5x + 3 = 0$.

- A. $\pm 1, \pm 2$ B. $\pm 1, \pm 2, \pm 3$ C. $\pm 1, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm 3$ D. $\pm 1, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm 2$
- 14. What is the remainder when $x^{21} 1$ is divided by x + 1?
 - A. -22 B. -2 C. -1 D. 0

- A. 1 B. 2 C. 3 D. 4
- 16. Which of the following is a factor of $x^3 + 5x^2 + 2x 8$?
 - A. $x^2 + 6x + 8$ B. $x^2 + 3x + 2$ C. x 2 D. x 4
- 17. Determine a polynomial inequality whose solution is graphed below:

-	-3	-2	-1	0	1	2	3
A. $(x-1)(x+2)^2 \le 0$			B. ((x+1)((x-2)	$0^2 \leq 0$	
C. $(x+1)(x-2)^2 \ge 0$				D. ((x-1)	(x-2)	$)^2 \ge 0$

18. Determine all real roots of the equation $x^3 + x^2 - 5x - 5 = 0$.

JUNE 1992

21.

- 19. Let p(x) be a polynomial such that p(-3) = 0. Which of the following must be a factor of p(x)?
 - A. x B. x-3 C. x+3 D. x^2-9
- 20. Determine all possible rational roots of $2x^3 5x^2 + 3x 5 = 0$.

A.
$$\pm 1, \pm 2$$
 B. $\pm 1, \pm 5$ C. $\pm 1, \pm 5, \pm \frac{1}{2}, \pm \frac{5}{2}$ D. $\pm 1, \pm 2, \pm \frac{1}{5}, \pm \frac{2}{5}$

22. Determine the remainder when $p(x) = x^{28} - 2x^5 + 3$ is divided by x - 1.

A. 2 B. 3 C. 4 D. 6

- 23. Using the graph of the polynomial function f(x) shown, determine all values of x such that f(x + 3) > 0.
 - A. -5 < x < -2 or x > 0B. x < -5 or -2 < x < 0C. -2 < x < 1 or x > 3D. 1 < x < 4 or x > 6

24. A polynomial function p(x), of degree 3, has the real zeros -2, 1 and 4, and a *y*-intercept of 24. Determine the value of p(6).

JAN 1993

25. Determine a real zero of the function shown:

A. -2 B. 2 C. 3 D. 4

26. Determine all possible rational roots of $6x^3 - 5x^2 - 7x - 3 = 0$.

- A. $\pm 1, \pm 3$ B. $\pm 1, \pm 2, \pm 3, \pm 6$ C. $\pm \frac{1}{3}, \pm \frac{2}{3}, \pm 1, \pm 2, \pm 3, \pm 6$ D. $\pm \frac{1}{6}, \pm \frac{1}{3}, \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm 3$
- 27. Determine the remainder if $x^3 2x^2 + 3x 7$ is divided by x + 1.
 - A. -13 B. -9 C. -5 D. 5
- 28. Solve: $x^3 + 5x^2 + 6x = 0$ A. -2, -3 B. 1, -6 C. 0, -2, -3 D. 0, 1, -6

- 29. Determine a polynomial equation that has roots ± 3 and 2.
 - A. $x^{3} 2x^{2} 9x + 18 = 0$ B. $x^{3} + 2x^{2} - 9x - 18 = 0$ C. $x^{3} - 2x^{2} + 9x + 18 = 0$ D. $x^{3} + 2x^{2} - 9x - 18 = 0$

30. How many real roots are there for the polynomial equation $x(x^2 - 4)(x + 3)(x^2 + 5) = 0$?

A. 3 B. 4 C. 5 D. 6

31. Graph the solution of the inequality for $(x-3)(x+1)(x-1) \ge 0$

32. If the graph of the polynomial function shown is of the form $y = ax^3 + bx^2 + cx + d$ (where *a*, *b*, *c*, and *d* are constants), what are the conditions on *a* and *d*?

A.	a > 0, d = 0	B. $a > 0, d = 0$
С	a < 0, d = 0	D. $a < 0, d = 0$

JUNE 1993

- 33. Determine a possible equation of the inverse of the relation shown.
 - A. $y = x^3 3x$ B. $y = 3x - x^3$ C. $y = x^3 - 9x$ D. $y = 9x - x^3$

34. If a polynomial p(x) is divided by x - 5, what is the remainder?

A. p(-5) B. p(5) C. p(x-5) D. p(x+5)

- 35. Estimate the real zeros of the function shown:
 - A. -2.3, 1.3, 2.5
 B. 2.3, -1.3, -2.5
 C. -2.7, 1.3, 2.5
 D. 2.7, -1.3, -2.5

36. Determine a polynomial equation that has roots $\sqrt{2}$, $-\sqrt{2}$ and 1.

- A. $x^{3} x^{2} 4x + 4 = 0$ B. $x^{3} + x^{2} - 4x - 4 = 0$ C. $x^{3} + x^{2} - 2x - 2 = 0$ D. $x^{3} - x^{2} - 2x + 2 = 0$
- 37. Determine the remainder when $6x^3 11x^2 + 14x 5$ is divided by $2x^2 7x + 3$.
 - A. -107x 53 B. -107x + 43 C. 40x 20 D. 20

38. What is the minimum degree of a polynomial inequality whose solution is shown below?

	- 3	-1	° 9	-
A. 3	B. 4	C. 5	D. 6	

39. Solve: $2x^3 + 3x^2 - 11x - 6 = 0$

JAN 1994

40. According to the Rational Root Theorem, what are the possible rational roots of $2x^4 + 3x^2 - 7x + 3 = 0$?

A.
$$\pm 1, \pm 3$$
 B. $\pm 1, \pm 2, \pm \frac{1}{3}, \pm \frac{2}{3}$ C. $\pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}$ D. $\pm 1, \pm 2, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}$

- 41. Which equation could represent the following graph?
 - A. $y = (x + 2)^{2} (x 1)$ B. $y = (x + 2)^{2} (x + 1)$ C. $y = (x - 2)^{2} (x - 1)$ D. $y = (x - 2)^{2} (x + 1)$

42. Determine the quotient when $x^3 - 2x^2 - 9$ is divided by x - 3.

A. $x^2 + 5x + 15$ B. $x^2 + x - 6$ C. $x^2 - 5x + 6$ D. $x^2 + x + 3$

43. What value of k would make x + 2 a factor of $2x^3 - 5x^2 - 2kx + 8$?

A. -7 B. -1 C. 1 D. 7

- 44. From the graph of y = f(x) shown, find the approximate solutions to f(x) = 2.
 - A. -4.2
 - B. 8.6
 - C. -4.5, 0.3, 2.5
 - D. -4.2, -0.5, 3.0

45. Determine the graph of the solution set of the inequality $x(x-1)^n (x+2)^m > 0$, if *n* is an even positive integer and *m* is an odd positive integer.

46. Solve: $2x^3 - x^2 - 8x + 4 = 0$

JUNE 1994

47. According to the Rational Root Theorem, which one of the following is a possible root of the equation $8x^4 + 19x^3 - 13x^2 + 7x - 3 = 0$?

A. 2 B. 3 C. 4 D. 8

48. Which graph could represent a polynomial function of degree 5?

49. When $4x^2 + 2kx - 5$ is divided by x + 2 the remainder is 3. What is the value of k?

A. -6 B. -2 C. 2 D. $\frac{11}{4}$

50. Solve:
$$x^3 - 2x^2 - 5x + 6 = 0$$

A. 1, 2, -3 B. 1, -2, 3 C. -1, 2, -3 D. -1, -2, 3

51. Determine the remainder when $p(x) = 4x^3 - 6x^2 + 4x - 3$ is divided by 2x - 1.

A. –7 B. –4 C. –3 D. –2

- 52. Determine a polynomial equation that has roots of $\sqrt{3}$, $-\sqrt{3}$ and 2.
 - A. $x^{3} 2x^{2} 3x + 6 = 0$ B. $x^{3} + 2x^{2} - 3x - 6 = 0$ C. $x^{3} - 2x^{2} - 9x + 18 = 0$ D. $x^{3} + 2x^{2} - 9x - 18 = 0$
- 53. Which polynomial inequality has the solution -3 < x < -2 or x > 1?
 - A. (x+3)(x+2)(x-1) < 0B. (x+3)(x+2)(x-1) > 0C. (x-3)(x-2)(x+1) < 0D. (x-3)(x-2)(x+1) > 0

- 57. Determine all real roots of the equation $(x^2 4)(x^2 + 9)(x 5)^2 = 0$.
 - A. 2, 3, 5 B. ±2, 5 C. ±2, ±3, 5 D. ±2, ±3, ±5

- 58. The polynomial equation $x^3 ax^2 + bx c = 0$, where *a*, *b* and *c* are integers, has 6 as one of its roots. According to the Rational Root Theorem, which of the following could be a value of *c*?
 - A. 2 B. 3 C. 9 D. 18

59. Determine the quotient and remainder: $(t^4 + 3t^3 + 5t^2 + 21t - 14) \div (t^2 + 3t - 2)$

A. quotient: $t^2 + 7$, remainder: 0 B. quotient: $t^2 + 7$, remainder: -28

C. quotient: $t^2 + 3$, remainder: 12t - 8 D. quotient: $t^2 + 3$, remainder: 30t - 20

60. Find the remainder when $x^{39} - 3x^{15} - 2x + 1$ is divided by x - 1.

A. -3 B. -1 C. 1 D. 5

- 61. Determine all real solutions for $x^3 2x^2 5x + 6 = 0$. A. -1, 3, -2 B. -1, -3, 2 C. 1, 3, -2 D. 1, -3, 2
- 62. Solve the inequality: $x(x-2)(x^2-4) < 0$

63. A square piece of cardboard 10 cm by 10 cm will have equal squares with sides of length x cm cut from each corner. The sides will then be folded up to create a box with no top. Determine the value of x that will give the box a maximum volume.

JUNE 1995

64. If x + 8 is a factor of the polynomial P(x), which of the following must be true?

A. P(-8) = 0 B. P(8) = 0 C. P(x) = 8 D. P(x) = -8

- 65. What is the maximum number of real roots that a polynomial equation can have if its degree is 6?
 - A. 3 B. 5 C. 6 D. 7
- 66. According to the Rational Zero Theorem, which number is a possible zero of the function $f(x) = 6x^3 + 7x^2 3x + 4$?

A.
$$-\frac{3}{2}$$
 B. $\frac{1}{4}$ C. $\frac{1}{3}$ D. 3

- 67. Determine the remainder when $2x^4 + 4x^3 5x^2 + 8$ is divided by x 2.
 - A. -12 B. 18 C. 30 D. 52
- 68. Which graph is the best representation of $y = ax^3 + bx^2 + cx 24$ where a > 0?

POLY-12

- 69. Determine all the real zeros of the function $P(x) = 2x(x^2 + 9)(x^2 2)$.
 - A. $0, \pm \sqrt{2}$ B. $0, \pm 3$ C. $0, \sqrt{2}, 3$ D. $0, \pm \sqrt{2}, \pm 3$

70. Solve the inequality:
$$(x + 2)^2(x - 2)(x - 4) < 0$$

- A. x < -2 B. -2 < x < 4 C. 2 < x < 4 D. x < 2 or x > 4
- 71. The graph of the function f(x) is shown. If g(x) = 3 f(x), determine the zeros of g(x).

A. -2, 2, 4 B. -6, 6, 12 C. -6, 9 D. -2, 3

JAN 1996

72. According to the Rational Root Theorem, determine all possible rational roots of $3x^3 - 8x^2 + 16x - 4 = 0$.

A. $\pm 1, \pm 3$ B. $\pm 1, \pm 2, \pm 4$ C. $\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, 3, \pm \frac{3}{2}, \pm \frac{3}{4}$ D. $\pm 1, \pm \frac{1}{3}, 2, \pm \frac{2}{3}, \pm 4, \pm \frac{4}{3}$

73. If p(x) is a polynomial function where p(-2) = 5, then which of the following could not be a zero of this function?

A. -5 B. -2 C. 2 D. 5

- 74. Find the remainder when $x^3 2x^2 + 5$ is divided by $x^2 + x 1$.
 - A. 4 B. 2x + 2 C. 2x + 4 D. 4x + 2
- 75. Solve for x: $x^3 2x^2 5x + 6 = 0$ A. -1, -2, 3 B. -1, 2, 3 C. 1, -2, 3 D. 1, 2, -3

- 76. Determine the value of k such that x + 2 is a factor of the polynomial $2x^3 + 5x^2 + kx 12$.
 - A. -12 B. -4 C. 4 D. 12
- 77. Which graph best represents $y = -x(x+3)^2 (x-3)^3$?

- 78. Given that p(x) and f(x) are polynomial functions such that p(x) = x f(x) + c, determine c if the graph of p(x) is shown.
 - A. *p*
 - B. *t*
 - C. *r*
 - D. *s*

JUNE 1996

79. If the polynomial p(x) is divided by x - 6, which of the following represents the remainder?

A. p(6) B. p(-6) C. p(x) + 6 D. p(0)

80. Determine the value of k if 2 is a zero of the function $p(x) = x^3 - 7x^2 + kx + 12$.

```
A. k = -16 B. k = 4 C. k = 5 D. k = 16
```

81. Determine the quotient when $x^3 - 12x^2 + 9x - 5$ is divided by x - 3.

A.
$$x^2 - 9x - 16$$
 B. $x^2 - 9x - 18$ C. $x^2 - 15x + 54$ D. $x^2 + 9x + 36$

- 82. If x + 4 is a factor of the polynomial $mx^3 11x^2 10x + n$, where *m* and *n* are integers, according to the Rational Root Theorem, which of the following could be a value for *n*?
 - A. 2 B. 6 C. 8 D. 10
- 83. Solve: $x^3 4x^2 > 12x$ A. -2 < x < 6B. x < -2 or x > 6C. -2 < x < 0 or x > 6D. -6 < x < 0 or x > 2
- 84. Which graph is a possible representation of $y = ax^4 + bx^3 + cx 6$, where *a* is a negative integer?

POLY-15

- 85. Determine a polynomial equation that has the following roots: 2, $\pm\sqrt{5}$
 - A. $x^{3} + 2x^{2} 5x 10 = 0$ B. $x^{3} - 2x^{2} + 5x - 10 = 0$ C. $x^{3} - 2x^{2} - 5x + 10 = 0$ D. $x^{3} + 2x^{2} + 5x + 10 = 0$
- 86. The graph of the cubic polynomial function p(x) is given below. Which of the following functions must have 3 unequal real zeros?
 - A. p(x) 7
 - B. p(x) 3
 - C. p(x-3)
 - D. p(x 7)

87. If x + 4 is a factor of the polynomial p(x), then which of the following must be true?

A. p(-4) = 0 B. p(4) = 0 C. p(0) = -4 D. p(0) = 4

- 88. According to the Rational Root Theorem, which number could not be a root of the equation $4x^3 + kx^2 + 3x 3 = 0$, where k is an integer?
 - A. -3 B. -1 C. $\frac{4}{3}$ D. $\frac{3}{2}$
- 89. What is the minimum degree of the polynomial function graphed below?
 - A. 3 B. 4 C. 5 D. 7

- 90. When $x^3 + x^2 kx 5$ is divided by x 2, the remainder is 1. Find the value of k.
 - A. 3 B. 3.5 C. 4.5 D. 5
- 91. Determine a polynomial equation that has the roots $\pm 2, \pm \sqrt{7}$.
 - A. $x^4 11x^2 + 28 = 0$ B. $x^4 + 11x^2 + 28 = 0$ C. $x^4 - 9x^2 + 14 = 0$ D. $x^4 + 9x^2 + 14 = 0$
- 92. Find the remainder for the following division. $x^2 + 2x 4 \sqrt{x^4 + 2x^3 3x^2 + 2x 6}$
 - A. 2 B. 10 C. 4x + 2 D. 16x 22
- 93. Determine the real root(s): $2x^3 3x^2 + 6x 9 = 0$
 - A. $-\frac{3}{2}$ B. $\frac{3}{2}$ C. $-\frac{3}{2}, \pm\sqrt{3}$ D. $\frac{3}{2}, \pm\sqrt{3}$
- 94. Use the graph of the function y = p(x) shown to solve the equation p(x 5) + 6 = 0.
 - A. -4
 - B. -1
 - C. 1
 - D. 4

JUNE 1997

95. According to the Rational Root Theorem, list all possible rational roots of $2x^8 - 5x^3 + 6x^2 - 4 = 0$.

A.
$$\pm 1$$
, ± 2 , ± 4 B. $\pm \frac{1}{2}$, ± 1 , ± 2 , ± 4 C. $\pm \frac{1}{4}$, $\pm \frac{1}{2}$, ± 1 , ± 2 D. $\pm \frac{1}{2}$, ± 1 , ± 2 , ± 4 , ± 8

96. Determine the remainder when $6x^3 - 11x^2 + 14x - 5$ is divided by $2x^2 - 7x + 3$.

A. -107*x* - 53 B. -107*x* + 43 C. 40 *x* - 20 D. 20

97. The following graph represents the polynomial function $y = Ax^4 + Bx^3 + Cx^2 + Dx + E$. What conditions must be satisfied by A and E?

98. Which polynomial inequality describes the solution shown?

99. For the polynomial function $p(x) = ax^3 + bx - 3$, p(-1) = 4. Determine the value of p(1).

A. -10 B. -4 C. 4 D. 10

100. If -2 is a root of $2x^3 + kx^2 - 11x + 6 = 0$, determine the other two roots.

101. Given a polynomial p(x), what condition must be true for x - 2 to be a factor of p(x)?

A.
$$p(2) = 0$$
 B. $p(-2) = 0$ C. $p(x) = 2$ D. $p(x) = -2$

102. According to the Rational Root Theorem, give all possible rational roots of $2x^3 - 5x^2 + 12x - 6 = 0$.

A.
$$\pm 1$$
, ± 2 , ± 3 , ± 6
B. $\pm \frac{1}{2}$, $\pm \frac{1}{3}$, $\pm \frac{2}{3}$, $\pm \frac{1}{6}$
C. ± 1 , ± 2 , ± 3 , ± 6 , $\pm \frac{1}{2}$, $\pm \frac{2}{3}$
D. ± 1 , ± 2 , $\pm \frac{1}{3}$, $\pm \frac{2}{3}$, $\pm \frac{1}{6}$

103. What is the quotient when $5x^3 - 6x^2 + 64$ is divided by x + 2?

A. $5x^2 + 4x + 8$ B. $5x^2 - 16x + 32$ C. $5x^2 + 4x + 72$ D. $5x^2 - 16x + 96$

- 104. Find the remainder when $3x^{45} + 4x^8 5x^3 + 2$ is divided by x + 1.
 - A. -10 B. -2 C. 4 D. 8

105. What is the least number of real zeros that a polynomial function can have if its degree is 5?

- A. 0 B. 1 C. 3 D. 5
- 106. Determine the real roots: $x^3 + 3x^2 6x 8 = 0$ A. -4, -1, 2 B. -4, 1, 2 C. -2, 1, 4 D. -1, 2, 4
- 107. Solve the inequality: (x + 5)(x 2)(6 x) > 0
 - A. x < -5 or x > 6B. x < -5 or x > 2C. -5 < x < 2 or x > 6D. x < -5 or 2 < x < 6

- 109. According to the Rational Root Theorem, determine all possible rational roots of $5x^3 4x^2 + 15 = 0$.
 - A. $\pm 1, \pm 5$ B. $\pm 1, \pm 3, \pm 5, \pm 15$ C. $\pm 1, \pm 3, \pm 5, \pm 15, \pm \frac{1}{5}, \pm \frac{3}{5}$ D. $\pm 1, \pm 5, \pm \frac{1}{3}, \pm \frac{5}{3}, \pm \frac{1}{5}, \pm \frac{1}{15}$

110. If 3x - 1 is a factor of p(x), which of the following must have a value of 0?

A. $p\left(\frac{1}{3}\right)$ B. $p\left(-\frac{1}{3}\right)$ C. p(-1) D. p(1)

111. How many real roots are there for the polynomial equation $x(x^2 - 4)(x^2 + 9) = 0$?

- A. 1 B. 2 C. 3 D. 5
- 112. Factor: $x^3 2x^2 5x + 6$ A. (x + 1)(x 2)(x + 3)B. (x + 1)(x + 2)(x 3)C. (x 1)(x 2)(x + 3)D. (x 1)(x + 2)(x 3)
- 113. Determine the quotient when $2x^3 5x^2 + 7x + 3$ is divided by 2x + 1.
 - A. $x^2 3x + 4$ B. $x^2 3x + 5$ C. $x^2 2x 2$ D. $x^2 2x + 2$

114. If the cubic polynomial function f(x) = k(x-1)(x+2)(x-3) passes through the point (2, 6), determine the value of k.

116. Given the graph of y = f(x), which of the following best represents the graph of y = (x + 3) f(x)?

117. If 5 is a zero of the polynomial P(x), then which of the following must be true?

- A. P(x) = 5 B. P(5) = 0 C. P(0) = 5 D. P(-5) = 0
- 118. According to the Rational Root Theorem, determine all possible rational roots of $4x^5 3x^3 + 6x 2 = 0$.

A.
$$\pm 1, \pm 2$$
B. $\pm 1, \pm 2, \pm 4, \pm \frac{1}{2}$ C. $\pm 1, \pm 2, \pm \frac{1}{2}, \pm \frac{1}{4}$ D. $\pm 1, \pm 2, \pm 4, \pm \frac{1}{2}, \pm \frac{1}{4}$

- 119. Determine the remainder when $x^{12} 2x^7 + 6x^2 4$ is divided by x + 1.
 - A. 0 B. 1 C. 4 D. 5

120. Which of the following is a real zero of the polynomial function $f(x) = x^3 - 3x + 3$?

- A. -2.10 B. -2.00 C. 0.82 D. 3.00
- 121. The graph of a polynomial function y = P(x) is shown below. If f(x) = P(x) + k, determine all values of k such that f(x) will have two unequal real zeros and no other real zeros.
 - A. k < -3 or k > 2B. 2 < k < 5C. -2 < k < 5
 - D. 2 < k < 5 or k < -3

122. Solve: $x^3 - 8x^2 \ge -4x + 20$

JUNE 1999

123. When the polynomial p(x) is divided by x - 4, the remainder is 6. Which of the following must be true?

A.
$$p(4) = 6$$
 B. $p(-4) = 6$ C. $p(6) = 4$ D. $p(-6) = 4$

- 124. Solve: $x^3 7x 6 = 0$ A. -1, -2, 3 B. -1, 2, -3 C. 1, -2, 3 D. 1, 2, -3
- $\begin{array}{c} \hline \\ \hline \\ \hline \\ 125. \end{array} \text{ Determine the largest root of } x^3 30x^2 + 235x 430 = 0. \\ \hline \\ A. 2.64 \qquad B. 8.74 \qquad C. 18.62 \qquad D. 18.75 \end{array}$
 - 126. According to the Rational Root Theorem, which of the following equations has possible rational roots of $\pm 1, \pm 2, \pm \frac{1}{3}, \pm \frac{2}{3}$?
 - A. $3x^3 4x^2 + 5x + 1 = 0$ B. $6x^3 - 4x^2 + 5x + 1 = 0$ C. $2x^3 - 4x^2 + 5x + 3 = 0$ D. $3x^3 - 4x^2 + 5x + 2 = 0$
 - 127. Which of the following is a polynomial function with zeros of $-\sqrt{2}$, $\sqrt{2}$ and -1?
 - A. $P(x) = x^3 x^2 2x + 2$ B. $P(x) = x^3 + x^2 - 2x - 2$ C. $P(x) = x^3 - x^2 - 4x + 4$ D. $P(x) = x^3 + x^2 - 4x - 4$
 - 128. The graph of the polynomial function $P(x) = ax^3 + bx^2 + cx + d$, where *a*, *b*, *c* and *d* are constants, is shown. What are the conditions on *c* and *d*? *y*
 - A. c = 0, d = 0B. c = 0, d > 0C. c > 0, d = 0D. $c \neq 0, d = 0$

- 129. The graph of the cubic polynomial function y = P(x) is shown below. Determine the zeros of y = xP(-x).
 - A. -5, -1, 0, 1
 B. -5, -1, 1
 C. -1, 0, 1, 5
 D. -1, 1, 5

(130. Solve: $x^3 - 8x^2 > 18x - 20$

JAN 2000

- 131. According to the Rational Root Theorem, determine all possible rational roots of $5x^3 3x^2 + x 2 = 0$.
 - A. ± 1 , ± 2 B. ± 1 , ± 5 C. ± 1 , ± 2 , $\pm \frac{1}{2}$, $\pm \frac{5}{2}$ D. ± 1 , ± 2 , $\pm \frac{1}{5}$, $\pm \frac{2}{5}$

132. How many different real roots are there for the polynomial equation $x(x-3)(x^2+6) = 0$?

- A. 1 B. 2 C. 3 D. 4
- 133. Determine the remainder when $3t^3 7t^2 11t + 20$ is divided by $t^2 + 2t 4$
 - A. 3t-13 B. -25t+24 C. -25t+72 D. 27t-32
- 134. A cubic polynomial function that passes through the point (3, 24) has zeros at 5, -1 and -3. Determine an equation of this function.

A.
$$y = -2 (x - 5)(x + 1)(x + 3)$$

B. $y = -\frac{1}{2} (x - 5)(x + 1)(x + 3)$
C. $y = \frac{1}{2} (x - 5)(x + 1)(x + 3)$
D. $y = 2 (x - 5)(x + 1)(x + 3)$

JUNE 2000

138. According to the Rational Root Theorem, determine all possible rational roots of $4x^3 - 7x^2 + 3x - 2 = 0$.

- 141. Solve the following inequality for x, given that a, b and c are constants such that a < b < c. $(x - a)^3(x - b)^2(x - c) > 0$
 - A. x > c B. x < a or x > c C. x < c, $x \neq a$, $x \neq b$ D. a < x < c, $x \neq b$
- 142. Determine all values for k such that $y = 2x^3 + 3x^2 12x + k$ has only one real zero.
 - A. k < -20 B. k > 7 C. -20 < k < 7 D. k < -20 or k > 7
- 143. When $2x^3 8x^2 + kx + 18$ is divided by x + 2, the remainder is -14. Find k, then find all real roots of $2x^3 8x^2 + kx + 18 = 0$.

- 144. Which expression represents the remainder when the polynomial P(x) is divided by x 9?
 - A. *P*(9) B. *P*(-9) C. *P*(0) D. *P*(*x* 9)
- 145. According to the Rational Root Theorem, which of the following is a possible root of the equation $5x^3 + mx^2 + nx + 20 = 0$, where *m* and *n* are integers?
 - A. $\frac{1}{10}$ B. $\frac{1}{5}$ C. $\frac{1}{4}$ D. $\frac{1}{2}$
- 146. Determine the quotient when $x^4 8x^2 + 2x 7$ is divided by x + 3.

A. $x^2 - 5x - 13$ B. $x^2 - 11x + 35$ C. $x^3 - 3x^2 + x - 1$ D. $x^3 + 3x^2 + x + 5$

- 147. Determine the value of k if x 2 is a factor of the polynomial $x^3 4x^2 + kx + 6$.
 - A. -9 B. -1 C. 1 D. 9

148. Solve $(x + a)^2 (x + b)(x + c) < 0$, where *a*, *b*, *c* are real number constants and 0 < a < b < c.

A.
$$b < x < c$$
 B. $-b < x < -c$ C. $-c < x < -b$ D. $-b < x < -a$, $x < -c$

149. Solve: $x^3 - 15x^2 = -10x - 30$

JUNE 2001

- 150. Determine the number of real zeros of the function shown.
 - A. 1 B. 2 C. 3 D. 4

151. Find the quotient when $2x^3 - 3x^2 + 2x - 8$ is divided by x + 1.

A. $x^2 - 2x$ B. $x^2 - 4x + 6$ C. $2x^2 - x + 1$ D. $2x^2 - 5x + 7$

152. The polynomial equation $mx^3 + 7x^2 - 3x + n = 0$, where *m* and *n* are integers, has a root of $\frac{4}{9}$. According to the Rational Root Theorem, which of the following could be a value for *m*?

A. 2 B. 4 C. 6 D. 18

153. Solve: $x^3 < x$ A. x < 0, x > 1B. -1 < x < 1C. -1 < x < 0, x > 1D. x < -1, 0 < x < 1

 $154. Solve: x^3 + 2x^2 - 104x + 192 = 30$ A. 1.65, 8.24 B. 2.37, 7.73 C. -12.11, 2.37, 7.73 D. -11.89, 1.65, 8.24

155. The points (-2, 0), (0, 5) and (2, -4) are on the graph of a third degree polynomial function, y = P(x). If P(x) is divided by x - 2, determine the remainder.

A. -4 B. 0 C. 4 D. 5

156. A cubic polynomial function has a double zero at -2 and a single zero at 3. If this function passes through the point (4, -24), determine an equation of the function. Answer may be left in factored form.

ADDITIONAL QUESTIONS

157. What numbers should replace p and q in the incomplete synthetic division shown below?

- A. p = -5, q = -3 B. p = -5, q = 3 C. p = 5, q = -3 D. p = 5, q = 3
- 158. Determine the coefficient of x in the quotient when $2x^4 7x^3 + 9x^2 + 2x 8$ is divided by $x^2 3x + 4$.
 - A. -13 B. -1 C. 1 D. 13
- 159. Graph the solution to $(x + 1)(x 2)^2(x + 3)^3 \le 0$.

160. Find a polynomial equation of lowest degree with integral coefficients such that one root of f(x) = 0 is $\sqrt{2} + \sqrt{3}$.

161. Given the following table of values for the polynomial function y = f(x), determine the minimum number of zeros for f(x).

	л	y
	-3	-15
A. 1	-2	-12
B. 2	-1	2
C. 3	0	3
D 4	1	5
	2	-7
	3	-19

- 162. When $x^4 + kx^2 5$ is divided by $x^2 + 1$, the remainder is -6. Find the value of k.
 - A. -2 B. 0 C. 1 D. 2
- 163. A polynomial function of degree 3 has zeros -2, 2, 4, and passes through the point (3, -25).Determine an equation of the function. (Answer may be left in factored form.)
- 164. Determine the cubic polynomial function which has zeros of -1, 2 and 3, and goes through the point (4, 6).

A.
$$f(x) = (x+1)(x-2)(x-3)$$

B. $f(x) = \frac{3}{5}(x+1)(x-2)(x-3)$
C. $f(x) = (x-1)(x+2)(x+3)$
D. $f(x) = \frac{1}{21}(x-1)(x+2)(x+3)$

165. If p(x) = (x - 2)q(x) + r, determine p(2).

- A. q(2) B. q(-2) C. -r D. r
- 166. A polynomial function of degree 3 has zeros 5, 3, -1, and passes through the point (2, -6).Determine an equation of this function. (Answer may be left in factored form.)

- 167. Determine a factor of degree 2 of the polynomial p(x) if p(3) = 0 and p(-4) = 0.
 - A. $x^2 + x 12$ B. $x^2 x + 12$ C. $x^2 x 12$ D. $x^2 + x + 12$

168. Determine the values of k for which $\frac{1}{3}$ is a zero of $p(x) = -9x^3 + 3x^2 - 3kx + k^3$. A. -2, -1, 0 B. -2, 0, 1 C. -1, 0, 1 D. -1, 0, 2

- 169. Determine the polynomial function of degree 3, with zeros of -2, 0, and 3, that passes through the point (2, 5). Answer may be left in factored form.
- 170. Determine the number of rational roots for the equation $x^5 2x 1 = 0$.
 - A. 1 B. 2 C. 3 D. 5
- 171. When a polynomial P(x) is divided by x + 4, the remainder is 5. Which point must be on the graph of the function y = P(x)?
 - A. (-4, 5) B. (5, -4) C. (-4, -5) D. (-5, -4)
- 172. A polynomial function of degree 3 has a zero of -1 and a double zero of 4. Determine this function if it passes through the point (1, 10). Answer may be left in factored form.
- 173. If x + 2 is a factor of the polynomial $P(x) = 2x^3 + kx^2 32x 4k^2$, determine all possible values of k.

175. Determine the range of the function $f(x) = x^4 - 3x^3 - 8$.

A. $y \ge -18.81$ B. $y \ge -16.54$ C. $y \ge -8$ D. all real numbers

- 176. Determine the cubic polynomial function with zeros 1, 2, and -3 that passes through (3, -10). (Answer may be left in factored form.)
- 177. The function H(x) is the product of a 3rd degree polynomial function and a 2nd degree polynomial function. What is the maximum number of zeros of H(x)?
 - A. 2 B. 3 C. 5 D. 6

178. Which graph could represent $f(x) = x(a-x)(x-b)^2 (x-c)^3$, where *a*, *b* and *c* are constants?

- 180. If the polynomial $p(x) = ax^2 + bx 6$ is divided by (x-1), the remainder is -9. When p(x) is divided by (x + 2), the remainder is 12. Find the value of b.
 - A. -5 B. -2 C. 2 D. 5

181. If 2 is a root of the polynomial equation $6x^3 + kx^2 + x + 2 = 0$, determine the other roots.

POLYNOMIALS

				91	A	139	D
1	D	46	$x = -2 \frac{1}{2} 2$	92	В	140	С
2	D		x = 2, <u>7</u> ,2	93	В	141	В
3	В	47	В	94	С	142	D
4	А	48	D	95	В	143	-1.66, 1.22, 4.44
5	С	49	С	96	С	144	Α
6	1	50	В	97	В	145	В
	$x = -1, -\frac{1}{3}, 2$	51	D	98	D	146	С
7	С	52	А	99	А	147	С
8	А	53	В	100	-2.48 < x < 0.83 or $x > 9.65$	148	С
9	В	54	D	101	A	149	1.09, 1.95, 14.14
10	D	55	D	102	С	150	В
11	С	56	В	103	В	151	D
12	С	57	В	104	D	152	D
13	С	58	D	105	В	153	D
14	В	59	Ā	106	A	154	D
15	c	60	A	107	D	155	A
16	A	61	С	108	A	156	2
17	B	62	A	109	C		$y = -\frac{1}{3}(x+2)^2(x-3)$
18	- -1+,5	63	5	110	A	157	A
19	C	•••	x = -cm	111	C	158	B
20	C	64	А	112	D	159	D
21	B	65	C	113	B	160	$r^4 - 10r^2 + 1 - 0$
22	D	66	C	114	Δ	161	B
23	A	67	D	115		162	D
23	240	68	D	116		163	f(x) = 5(x-2)(x+2)(x-4)
25	Δ	69	Δ	117	B	164	B
26	D	70	с С	118	C	165	2
20	Δ	71	Δ	119		100	$p(x) = -\frac{1}{3}(x-5)(x-3)(x+1)$
28	C C	72		120	Δ	166	П
29	Δ	73	B	120		167	Δ
30	R	7/	D	121	r > 7.82	168	<u> </u>
31	D	75	C	122	Λ = 7.02	160	5
32	В	76	B	123	Δ	105	$y = -\frac{3}{8}x(x+2)(x-3)$
32	D	70	C	124	~ ^	170	^
24	D ^	79		120		170	^
25	A ^	70	ь ^	120		171	A 5
30	A	19	A D	127		172	$y = \frac{3}{9}(x+1)(x-4)^2$
27		00	D	120	A C	172	
20	C	01 02	Б	129	248 < r < 0.82 or $r > 0.65$	173	$1.26 \le n \le 0.82 $ on $n \ge 2.52$
30 20		02	C	130	-2.48 < x < 0.85 or $x > 9.65$	174	-1.36 < x < 0.83 or $x > 3.53$
29	$x = -3, -\frac{1}{2}, 2$	03		120		175	D 5
40	2	84 07	в	132	В	176	$y = -\frac{3}{6}(x-1)(x-2)(x+3)$
40		80 00		133		477	0
41	A	00 07	в	134	B	1//	
4Z 42	U D	0/ 00	A 0	135	A A	170	$D = 2.42 \text{ cm} \approx 2.40$
43	U D	88		136	A	179	$x \le -2.43$ or $x \ge 3.40$
44	U D	89 00		13/	-8.52, -2.51, 1.03	180	A 1.1
40	D	90	A	130	U	101	$x = -\frac{1}{3}, \frac{1}{2}$