Physics 12 Section 16-7 The Electric Field

- 1. A field is defined as an area of influence.
- 2. Electric charges have electric fields around them.

- 3. Electric fields are studied by using a small positive test charge, q.
- 4. The strength of the electric field can be determined by:

5. The electric field at any point in space can be determined by the following:

$$E = F/q$$

Substituting in for F

$$F = \frac{kqQ}{r^2}$$

This is Coulomb's Law, the force on the charges q and Q

$$E = \frac{kqQ}{q r^2}$$

or

$$E = kQ/r^2$$

Example 16-6 page 487: Calculate the magnitude and direction of the electric field at a point P which is 30cm to the right of a point charge $Q = -3.0 \times 10-6C$

$$E = kQ/r^2$$

$$E = (9.0 \times 10^{9} \text{NM/}C^{2})(3.0 \times 10^{-6}C)$$

$$(0.30\text{m})^{2}$$

$3.0 \times 10^{5} N/C$

Note the sign is positive since a positive test charge is attracted to the negative charge.

Example 16-7 page 488: Two point charges are separated by a distance of 10.0cm. One has a charge of -25uC and the other +50uC. What is the direction and magnitude of the electric field at a point P in between them, that is 2.0cm from the negative charge? If an electron is placed at point P, what will its acceleration be initially?

$$Q_{1} = -25 \mu C$$

$$F_{1} = 2.0 \text{ cm}$$

$$Q_{1} = \frac{1}{E_{2}}$$

$$Q_{2} = +50 \mu C$$

$$Q_{2} = \frac{1}{E_{2}}$$

$$Q_{3} = \frac{1}{E_{2}}$$

$$Q_{4} = \frac{1}{E_{2}}$$

$$Q_{5} = \frac{1}{E_{2}}$$

$$Q_{7} = \frac{1}{E_{2}}$$

$$Q_{8} = \frac{1}{E_{2}}$$

$$Q_{8} = \frac{1}{E_{2}}$$

$$Q_{9} = \frac{1}{E_{2}}$$

$$Q_{1} = \frac{1}{E_{2}}$$

$$Q_{2} = \frac{1}{E_{2}}$$

$$Q_{3} = \frac{1}{E_{2}}$$

$$Q_{4} = \frac{1}{E_{2}}$$

$$Q_{5} = \frac{1}{E_{2}}$$

$$Q_{7} = \frac{1}{E_{2}}$$

$$Q_{8} =$$

Example 16-8 page 489: Calculate the total electric field at point A and at point B due to both charges Q_1 and Q_2 .

