hysics is the most basic of the sciences. It deals with the behavior and
structure of matter. The field of physics is usually divided into the areas
y of motion, fluids, heat, sound, light, electricity and magnetism, and the
modern topics of relativity, atomic structure, condensed-matter physics, nu-
clear physics, elementary particles, and astrophysics. We will cover all these
topics in this book, beginning with motion (or mechanics, as it is often called).
But before we begin on the physics itself, let us take a brief look at how this
overall activity called “science,” including physics, is actually practiced.

INTRODUCTION

How many aspects of Physics do
you see in this photograph?
(Partial answer given upside
down at bottom of photograph.)
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FIGURE 1-1 Aristotle is
the central figure (dressed in
blue) at the top of the stairs
(the figure next to him is Plato)
in this famous Renaissance
portrayal of The School of
Athens, painted by Raphael
around 1510. Also in this
painting, considered one of the
great masterpieces in art, are
Euclid (drawing a circle at the
lower right), Ptolemy (extreme
right with globe), Pythagoras,
Sophocles, and Diogenes.
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Science and Creativity

The principal aim of all sciences, including physics, is generally considered
to be the search for order in our observations of the world around us.
Many people think that science is a mechanical process of collecting facts
and devising theories. This is not the case. Science is a creative activity that
in many respects resembles other creative activities of the human mind.

Let’s take some examples to see why this is true. One important aspect of
science is observation of events. But observation requires imagination, for sci-
entists can never include everything in a description of what they observe.
Hence, scientists must make judgments about what is relevant in their
observations. As an example, let us consider how two great minds, Aristotle
(384-322 B.C.; Fig, 1-1) and Galileo (1564-1642; Fig. 2—15), interpreted motion
along a horizontal surface. Aristotle noted that objects given an initial push
along the ground (or on a tabletop) always slow down and stop. Consequently,
Aristotle believed that the natural state of an object is to be at rest. Galileo, in
his reexamination of horizontal motion in the early 1600s, imagined that if fric-
tion could be eliminated, an object given an initial push along a horizontal sur-
face would continue to move indefinitely without stopping. He concluded that
for an object to be in motion was just as natural as for it to be at rest. By in-
venting a new approach, Galileo founded our modern view of motion (more
details in Chapters 2, 3, and 4), and he did so with a leap of the imagination.
Galileo made this leap conceptually, without actually eliminating friction.

Observation and careful experimentation and measurement are one
side of the scientific process. The other side is the invention or creation of
theories to explain and order the observations, Theories are never derived
directly from observations. They are inspirations that come from the
minds of human beings. For example, the idea that matter is made up of
atoms (the atomic theory) was certainly not arrived at because someone
observed atoms. Rather, the idea sprang from creative minds. The theory
of relativity, the electromagnetic theory of light, and Newton’s law of uni-
versal gravitation were likewise the result of human imagination.

Introduction

The great theories of science may be compared, as creative achieve-
ments, with great works of art or literature. But how does science differ
from these other creative activities? One important difference is that sci-
ence requires festing of its ideas or theories to see if their predictions are
borne out by experiment.

Although the testing of theories can be considered to distinguish sci-
ence from other creative fields, it should not be assumed that a theory is
“proved” by testing. First of all, no measuring instrument is perfect, so
exact confirmation cannot be possible. Furthermore, it is not possible to
test a theory for every possible set of circumstances. Hence a theory can
never be absolutely “proved.” In fact, theories themselves are -generally
not perfect—a theory rarely agrees with experiment exactly, within exper-
imental error, in every single case in which it is tested. Indeed, the history
of science tells us that long-held theories are sometimes replaced by new
ones. The process of one theory replacing another is an important subject
in the philosophy of science; we can discuss it here only briefly.

A new theory is accepted by scientists in some cases because its pre-
dictions are quantitatively in much better agreement with experiment than
those of the older theory. But in many cases, a new theory is accepted only
if it explains a greater range of phenomena than does the older one.
Copernicus’s Sun-centered theory of the universe (Fig. 1-2b), for example,
was originally no more accurate than Ptolemy’s Earth-centered theory
(Fig. 1-2a) for predicting the motion of heavenly bodies (Sun, Moon, plan-
ets). But Copernicus’s theory had consequences that Ptolemy’s did not,
such as predicting the moonlike phases of Venus. A simpler (or no more
complex) and richer theory, one which unifies and explains a greater variety
of phenomena, is more useful and beautiful to a scientist. And this aspect,

Testing a theory

Theory

aceeplance

FIGURE 1-2 (a) Ptolemy’s geocentric view of the universe. Note at the center the four elements of the ancients:

Earth, water, air (clouds around the Earth), and fire; then the circles, with symbols, for the Moon, Mercury, Venus,
Sun, Mars, Jupiter, Saturn, the fixed stars, and the signs of the zodiac. (b) An early representation of Copernicus’s

heliocentric view of the universe with the Sun at the center. (See Chapter 5.)
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FIGURE 1~3 Studies on the
forces in structures by Leonardo

da Vinci (1452-1519).
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CHAPTER 1

Introduction

as well as quantitative agreement, plays a major role in the acceptance of
a theory.

An important aspect of any theory is how well it can quantitatively pre-
dict phenomena, and from this point of view a new theory may often seem to
be only a minor advance over the old one, For example, Einstein’s theory of
relativity gives predictions that differ very little from the older theories of
Galileo and Newton in nearly all everyday situations. Its predictions are bet-
ter mainly in the extreme case of very high speeds close to the speed of light.
In this respect, the theory of relativity might be considered as mere “fine-tun-
ing” of the older theory. But quantitative prediction is not the only important
outcome of a theory. Our view of the world is affected as well. As a result of
Einstein’s theory of relativity, for example, our concepts of space and time
have been completely altered, and we have come to see mass and energy as a
single entity (via the famous equation £ = mc?). Indeed, our view of the
world underwent a major change when relativity theory came to be accepted.

Physics and Its Relation to Other Fields

For a long time science was more or less a united whole known as natural
philosophy. Not until the last century or two did the distinctions between
physics and chemistry and even the life sciences become prominent. Indeed,
the sharp distinction we now see between the arts and the sciences is itself
but a few centuries old. It is no wonder then that the development of
physics has both influenced and been influenced by other fields. For exam-
ple, the notebooks (Fig. 1-3) of Leonardo da Vinci, the great Renaissance
artist, researcher, and engineer, contain the first references to the forces act-
ing within a structure, a subject we consider as physics today; but then, as
now, it has great relevance to architecture and building. Early work in elec-
tricity that led to the discovery of the electric battery and electric current
was done by an eighteenth-century physiologist, Luigi Galvani (1737-1798).
He noticed the twitching of frogs’ legs in response to an electric spark and
later that the muscles twitched when in contact with two dissimilar metals
(Chapter 18). At first this phenomenon was known as “animal electricity,”
but it shortly became clear that electric current itself could exist in the
absence of an animal. Later, in the 1930s and 1940s, a number of scientists
trained as physicists became interested in applying the ideas and techniques
of physics to problems in microbiology. Among the most prominent were
Max Delbriick (1906~1981) and Erwin Schrédinger (1887-1961). They
hoped, among other things, that studying biological organisms might lead to
the discovery of new unsuspected laws of physics. Alas, this hope has not
been realized; but their efforts helped give rise to the field we now call mol-
ecular biology, which has resulted in a dramatic increase in our understand-
ing of the genetics and structure of living beings.

You do not have to be a research scientist in, say, medicine or molecular
biology to be able to use physics in your work, A zoologist, for example, may
find physics useful in understanding how prairie dogs and other animals can
live underground without suffocating. A physical therapist will do a more
effective job if aware of the principles of center of gravity and the action of
forces within the human body. A knowledge of the operating principles of
optical and electronic equipment is helpful in a variety of fields. Life scien-
tists and architects alike will be interested in the nature of heat loss and gain
in human beings and the resulting comfort or discomfort. Architects them-
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FIGURE 1-4 ' .
the Hartford Civic Center in 1978, just two years after it was built.

selves may never have to calculate, for examplg, the dimensions of the pipes
in a heating system or the forces involved in a given structure to determl.ne if
it will remain standing (Fig. 1-4). But architects must know the prlnc'lples
behind these analyses in order to make realistic designs 'an.d to communicate
effectively with engineering consultants and oth-er specialists. From the aes-
thetic or psychological point of view, too, architects mus't be aware of tbe
forces involved in a structure—for instability, even if only illusory, can be dis-
comforting to those who must live or work in the structure. Indfaed, many of
the features we admire in the architecture of the past three n‘nllennla were
introduced not for their decorative effect but rather for practical purposes.
The development of the arch as a means to span a space and at the.same
time support a heavy load will be discussed in Chapter 9, wl}el'e we will see
that the pointed, or Gothic, arch was not originally a decorative device but a
technological development of considerable importance. . ‘ .

The list of ways in which physics relates to other flfalds: is extensive. In
the chapters that follow we will discuss many guch applications as we carry
out our principal aim of explaining basic physics.

Models, Theories, and Laws

When scientists are trying to understand a particular §e't of phepomepa,
they often make use of a model. A model, in the. scientific sense, is a kind
of analogy or mental image of the phenomena in tern.ls of something we
are familiar with, One example is the wave model of light. We cannpt see
waves of light as we can water waves. But it is Valuaple ‘to think of.hght as
if it were made up of waves, because experiments indicate that light be-
haves in many respects as water waves do. ‘ '
The purpose of a model is to give us an approximate mental or Vlsué'll
picture—something to hold onto—when we cannot see what actually is
happening. Models often give us a deeper pnderstandmg: the analogy to a
known system (for instance, water waves in th§ abpve example) can sug-.
gest new experiments to perform and can provide ideas about what other
related phenomena might occur.
SECTION 1-3

(a) This Greek temple in Paestum, Italy, was built 2500 years ago, and still stands. (b) Collapse of
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FIGURE 1-5 Measuring the
width of a board with a centimeter
ruler. Accuracy is about +1 mm.
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CHAPTER 1 Introduction

You may wonder what the difference is between a theory and a model.
Sometimes the words are used interchangeably. Usually, however, a model
is relatively simple and provides a structural similarity to the phenomena
being studied, whereas a theory is broader, more detailed, and can give
quantitatively testable predictions, often with great precision. Sometimes,
as a model is developed and modified and corresponds more closely to ex-
periment over a wide range of phenomena, it may come to be referred to
as a theory. The atomic theory is an example, as is the wave theory of light.

Models can be very helpful, and they often lead to important theories.
But it is important not to confuse a model, or a theory, with the real sys-
tem or the phenomena themselves.

Scientists give the title law to certain concise but general statements
about how nature behaves (that energy is conserved, for example). Some-
times the statement takes the form of a relationship or equation between
quantities (such as Newton’s second law, F = ma).

To be called a law, a statement must be found experimentally valid over a
wide range of observed phenomena. In a sense, the law brings a unity to many
observations. For less general statements, the term principle is often used
(such as Archimedes’ principle). Where to draw the line between laws and
principles is, of course, arbitrary, and there is not always complete consistency.

Scientific laws are different from political laws in that the latter are pre-
scriptive: they tell us how we ought to behave, Scientific laws are descriptive:
they do not say how nature should behave, but rather are meant to describe
how nature does behave. As with theories, laws cannot be tested in the infi-
nite variety of cases possible. So we cannot be sure that any law is absolutely
true. We use the term “law” when its validity has been tested over a wide
range of cases, and when any limitations and the range of validity are clearly
understood. Even then, as new information comes in, certain laws may have
to be modified or discarded.

Scientists normally do their work as if the accepted laws and theories
were true. But they are obliged to keep an open mind in case new infor-
mation should alter the validity of any given law or theory.

Measurement and Uncertainty

In the quest to understand the world around us, scientists seek to find rela-
tionships among the various physical quantities they observe and measure.
We may ask, for example, in what way does the magnitude of a force on
an object affect the object’s speed or acceleration? Or by how much does the
pressure of gas in a closed container (such as a tire) change if the tempera-
ture is raised or lowered? Scientists normally try to express such relation-
ships quantitatively, in terms of equations whose symbols represent the
quantities involved. To determine (or confirm) the form of a relationship,
careful experimental measurements are required, although creative thinking
also plays a role. ’
Accurate measurements are an important part of physics. But no mea-
surement is absolutely precise. There is an uncertainty associated with
every measurement. Uncertainty arises from different sources. Among the
most important, other than blunders, are the limited accuracy of every
measuring instrument and the inability to read an instrument beyond some
fraction of the smallest division shown. For example, if you were to use a
centimeter ruler to measure the width of a board (Fig. 1-5), the result

could be claimed to be accurate to about 0.1 cm, the smallest division on
the ruler. The reason is that it is difficult for the observer to interpolate be-
tween the smallest divisions, and the ruler itself may not have been manu-
factured or calibrated to an accuracy very much better than this.

When giving the result of a measurement, it is also important to state
the precision, or estimated uncertainty, in the measurement. For example,
the width of a board might be written as 5.2 £ 0.1 cm. The £0.1 cm (“plus
or minus 0.1 cm”) represents the estimated uncertainty in the measure-
ment, so that the actual width most likely lies between 5.1 and 5.3 cm. The
percent uncertainty is simply the ratio of the uncertainty to the measured
value, multiplied by 100. For example, if the measurement is 5.2 and the
uncertainty about 0.1 cm, the percent uncertainty is

01 100 = 2%
52 i

Often the uncertainty in a measured value is not specified explicitly. In
such cases, the uncertainty is generally assumed to be one or two units (or
even three) in the last digit specified. For example, if a length is given as
5.2 cm, the uncertainty is assumed to be about 0.1 cm (or perhaps 0.2 cm). It is
important in this case that you do not write 5.20 cm, for this implies an uncer-
tainty on the order of 0.01 cm; it assumes that the length is probably between
5.19 cm and 5.21 cm, when actually you believe it is between 5.1 and 5.3 cm.

The number of reliably known digits in a number is called the number
of significant figures. Thus there are four significant figures in the number
23.21 and two in the number 0.062 cm (the zeros in the latter are merely
“place holders” that show where the decimal point goes). The number of
significant figures may not always be clear. Take, for example, the number
80. Are there one or two significant figures? If we say it is about 80 km
between two cities, there is only one significant figure (the 8) since the zero
is merely a place holder. If it is 80 km within an accuracy of 1 or 2 km, then
the 80 has two significant figures. If it is precisely 80 km measured to within
+0.1 km, then we write 80.0 km.

When making measurements, or when doing calculations, you should
avoid the temptation to keep more digits in the final answer than is justified.
For example, to calculate the area of a rectangle 11.3 cm by 6.8 cm, the result
of multiplication would be 76.84 cm® But this answer is clearly not accurate
to 0.01 cm?, since (using the outer limits of the assumed uncertainty for each
measurement) the result could be between 11.2 X 6.7 = 75.04cm® and
114 X 6.9 = 78.66 cm?. At best, we can quote the answer as 77 cm? which
implies an uncertainty of about 1 or 2 cm? The other two digits (in the num-
ber 76.84 cm?®) must be dropped since they are not significant. As a general
rule, the final result of a multiplication or division should have only as many
digits as the number with the least number of significant figures used in the
calculation. In our example, 6.8 cm has the least number of significant figures,
namely two. Thus the result 76.84 cm? needs to be rounded off to 77 cm?.

Similarly, when adding or subtracting numbers, the final result is no
more accurate than the least accurate number used. For example, the result
of subtracting 0.57 from 3.6 is 3.0 (and not 3.03). Keep in mind when you
use a calculator that all the digits it produces may not be significant. When
you divide 2.0 by 3.0, the proper answer is 0.67, and not 0.66666666. Digits
should not be quoted (or written down) in a result, unless they are truly
significant figures. However, to obtain the most accurate result, it is good
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practice to keep an extra significant figure or two throughout a calculation,
and round off only in the final result. Note also that calculators sometimes
give too few significant figures. For example, when you multiply 2.5 X 3.2,
a calculator may give the answer as simply 8. But the answer is good to two
significant figures, so the proper answer is 8.0.

It is common in science to write numbers in “powers of ten,” or “expo-
nential” notation—for instance 36,900 as 3.69 X 10*, or 0.0021 as 2.1 X 107>,
(For more details, see Appendices A~2 and A-3.) One advantage of expo-
nential notation is that it allows the number of significant figures to be clearly
expressed. For example, it is not clear whether 36,900 has three, four, or five
significant figures. With exponential notation the ambiguity can be avoided:
if the number is known to an accuracy of three significant figures, we write
3.69 X 10% but if it is known to four, we write 3.690 X 10%

CONCEPTUAL EXAMPLE 1-1| s the diamond yours? A friend asks to
borrow your precious diamond for a day to show her family. You are a bit
worried, so you carefully have your diamond weighed on a scale which
reads 8.17 grams. The scale’s accuracy is claimed to be #0.05 grams. The
next day you weigh the returned diamond again, getting 8.09 grams. Is this
your diamond?

RESPONSE The scale readings are measurements and do not give the
actual value of the mass. Each measurement could have been high or low
by up to 0.05 gram or so. The actual mass of your diamond lies most likely
between 8.12 grams and 8.22 grams. The actual mass of the returned dia-
mond is most likely between 8.04 grams and 8.14 grams. These two
ranges overlap, so there is no reason to doubt that the returned diamond
is yours, at least based on the scale readings. (But check the color!)

Units, Standards, and the SI System

The measurement of any quantity is made relative to a particular stan-
dard or unit, and this unit must be specified along with the numerical
value of the quantity. For example, we can measure length in units such
as inches, feet, or miles, or in the metric system in centimeters, meters, or
kilometers. To specify that the length of a particular object is 18.6 is
meaningless. The unit must be given; for clearly, 18.6 meters is very dif-
ferent from 18.6 inches or 18.6 millimeters.

The first real international standard was the meter (abbreviated m)
established as the standard of length by the French Academy of Sciences
in the 1790s. In a spirit of rationality, the standard meter was originally
chosen to be one ten-millionth of the distance from the Earth’s equator to
either pole,” and a platinum rod to represent this length was made. (This
turns out to be, very roughly, the distance from the tip of your nose to the
tip of your longest finger, with arm and hand stretched out horizontally.)
In 1889, the meter was defined more precisely as the distance between two
finely engraved marks on a particular bar of platinum—iridium alloy. In
1960, to provide greater precision and reproducibility, the meter was rede-
fined as 1,650,763.73 wavelengths of a particular orange light emitted by

"Modern measurements of the Earth’s circumference reveal that the intended length is off by
about one-fiftieth of 1 percent. Not bad!
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the gas krypton 86. In 1983 the meter was again redefined, this time in
terms of the speed of light (whose best measured value in terms of the
older definition of the meter was 299,792,458 m/s, with an uncertainty of
1m/s). The new definition reads: “The meter is the length of path traveled
by light in vacuum during a time interval of 1/299,792,458 of a second.”

British units of length (inch, foot, mile) are now defined in terms of
the meter. The inch (in.) is defined as precisely 2.54 centimeters (cm;
1cm = 0.01 m). Other conversion factors are given in the table on the in-
side of the front cover of this book.

Table 1-1 presents some characteristic lengths, from very small to
very large. .

The standard unit of time is the second (s). For many years, the sec-
ond was defined as 1/86,400 of a mean solar day. The standard second is
now defined more precisely in terms of the frequency of radiation emit-

TABLE 1-1
Some typical Lengths or Distances (order of magnitude)

Length (or distance) Meters (approximate)

Neutron or proton (radius) 1075 m
Atom 1079%m
Virus [see Fig, 1-6] 1077 m
Sheet of paper (thickness) 107 m
Finger width 1072 m
Football field length 102 m
Mt. Everest height [see Fig, 1-6] 10 m
Earth diameter 107 m
Earth to Sun 10" m
Nearest star, distance 10 m
Nearest galaxy 102 m
Farthest galaxy visible 10% m

(b)

The new defll'llt on of the 1 eter has the effect o iving the Speed of li ht the exact value of

fine (’1%({{;{}’53{11/}

FIGURE 1-6 (a) Some
viruses (about 10”7 m long)
attacking a cell. (b) Mt. Everest’s
height is on the order of 10*m
(8848 m to be precise).
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TABLE 1-2 Some typical Time Intervals

TABLE 1-3 Some Masses

m’ﬁi}e interval Seconds (approximate) Object Kilograms (approx.)
Lifetime of very unstable particle 1025 Electron 10~ kg
Lifetime of radioactive elements 10725 to 10%s Proton, neutron 107%kg
Lifetime of muon 107 s DNA molecule 10~ kg
Time between human heartbeats 10° s(=1s) Bacterium 107 ¥kg
One day 10° s Mosquito 1075 kg
One year 3 X107 s Plum 107! kg
Human life span 2 X 10° s Person 10 kg
Length of recorded history 10! s Ship 10 kg
Humans on Earth 10% s Earth 6 x 10 kg
Life on Earth 10Y s Sun 2 % 10% kg
Age of Universe 10 s Galaxy 10" kg

Sterdard of muass (kilogram)
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ted by cesium atoms when they pass between two particular states.
Specifically, one second is defined as the time required for 9,192,631,770
periods of this radiation. There are, of course, precisely 60's in one minute
(min) and 60 minutes in one hour (h). Note that these two factors of 60
(as well as the 2.54 cm per inch) are definitions and hence have an indef-
inite number of significant figures. Table 1-2 presents a range of mea-
sured time intervals.

The standard unit of mass is the kilogram (kg). The standard mass is a
particular platinum—iridium cylinder, kept at the International Bureau of
Weights and Measures near Paris, France, whose mass is defined as exactly
1kg. A range of masses is presented in Table 1--3. [For practical purposes,
1 kg weighs about 2.2 pounds.]

When dealing with atoms and molecules, the unified atomic mass unit (u)
is usually used. In terms of the kilogram

1u = 1.6605 X 107%" kg.

The definitions of other standard units for other quantities will be
given as we encounter them in later chapters.

In the metric system, the larger and smaller units are defined in multi-
ples of 10 from the standard unit, and this makes calculation particularly
easy. Thus 1 kilometer (km) is 1000 m, 1 centimeter is 5 m, 1 millimeter
(mm) is w5 m or {5 cm, and so on. The prefixes “centi-,” “kilo-,” and others
are listed in Table 1-4 and can be applied not only to units of length, but
to units of volume, mass, or any other metric unit. For example, a centiliter
(cL) is 155 liter (L) and a kilogram (kg) is 1000 grams (g).

When dealing with the laws and equations of physics it is very impor-
tant to use a consistent set of units. Several systems of units have been in
use over the years. Today the most important is the Systéme International
(French for International System), which is abbreviated SI. In SI units, the
standard of length is the meter, the standard for time is the second, and
the standard for mass is the kilogram. This system used to be called the
MKS (meter-kilogram-second) system.

A second metric system is the cgs system, in which the centimeter, gram,
and second are the standard units of length, mass, and time, as abbreviated in

Introduction

the title. The British engineering system takes as its standards the foot for
length, the pound for force, and the second for time.

SI units are the principal ones used today in scientific work. We will
therefore use SI units almost exclusively in this book, although we will
give the cgs and British units for various quantities when introduced.

Converting Units

Any quan'tity we measure, such as a length, a speed, or an electric cur-
rent, consists of a number and a unit. Often we are given a quantity in
one set of units, but we want it expressed in another set of units, For ex-
ample, suppose we measure that a table is 21.5 inches wide, and we want
to express this in centimeters. We must use a conversion factor which in
this case is

lin. = 2.54 cm
or, written another way,

1 = 2.54 cm/in.
Since r}lultiplying by one does not change anything, the width of our table,
incm, is

21.5 inches = (21.5in.) X (2.54 %13

Note hovy the unitg (inches in this case) cancelled out. A table containing
many unit conversions is found inside the front cover of this book. Let’s
take some Examples.

) = 54.6 cm

The 100-m dash. What is the length of the 100-m dash
expressed in yards?

SOLUTION Let us assume the distance is accurately known to four

significant figures, 100.0 m. One yard (yd) is precisely 3 feet (36 inches)
SO we can write ,

lyd = 3ft = 36in. = (36 in.) (2.540 %) = 91.44 cm
n.

or,

lyd = 09144 m,
since 1 m = 100 cm. We can rewrite this result as

1yd
1 = —— =
m 0.9144 1.094 yd.

Then

100m = (100 m) (1.094 }r;f) = 1094 yd,

soa 100-m dash is 9.4 yards longer than a 100-yard dash.

SECTION 1-6

TABLE 1-4

Metric (Sl) Prefixes

Prefix Abbreviation Value
exa E 1018
peta P 101
tera T 1012
giga G 10°
mega M 108
kilo k 10°
hecto h 102
deka da 10!
deci d 107!
centi c 1072
milli m 1073
microt In 1076
nano n 107°
pico - p 10712
femto f 1071
atto a 10™18

i is the Greek letter “mu.”

Converting Units
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Area of a cell membrane. A round membrane has an
area of 1.25 square inches. Express this in square centimeters.

SOLUTION Because 1 in. = 2.54 cm, then
1in? = (2.54 cm)? = 6.45 cm®,

So

cm?

2
125in? = (125in2) (2.54 %1-) = (125in2) (6.45 : 2) = 8.06 cm.?

Speeds. Where the posted speed limit is 55 miles per
hour (mi/h or mph), what is this speed (a) in meters per second (m/s)
and (b) in kilometers per hour (km/h)?

SOLUTION (a) We can write 1 mile as

L in. em) /(1m ) _
1 mi = (5280 fX) (12 ﬁ)(z.54 m) <100mﬁ> 1609 m.

Note that each conversion factor is equal to one. We also know that 1 hour
equals (60 min/h) X (60s/min) = 3600s/h, so

mi mi m 1H _
55—h— = (55 H) (1609 fﬁl) (———3600 S) 25 m/s.

(b) Now we use 1 mi = 1609 m = 1.609 km; then

mi mi km km
55 " (55 ) (1.609 fﬁi) = 88

h h

When changing units, you can avoid making an error in the use of
conversion factors by checking that units cancel out properly. For example,
in our conversion of 1 mi to 1609 m in Example 1-4(a), if we had incor-
rectly used the factor (12n) instead of (%), the meter units would not

im

have cancelled out; we would not have ended up with meters.

Order of Magnitude: Rapid Estimating

We are sometimes interested only in an approximate value for a quantity.
This might be because an accurate calculation would take more time than
it is worth or would require additional data that are not available. In other
cases, we may want to make a rough estimate in order to check an accu-
rate calculation made on a calculator, to make sure that no blunders were
made when entering the numbers.

A rough estimate is made by rounding off all numbers to one signifi-
cant figure and its power of 10, and after the calculation is made, again
only one significant figure is kept. Such an estimate is called an order-of-
magnitude estimate and can be accurate within a factor of 10, and often
better. In fact, the phrase “order of magnitude” is sometimes used to refer
simply to the power of 10.

To give you some idea of how useful and powerful rough estimates
can be, let us do a few “worked-out Examples.”

CHAPTER1 Introduction

(b)

FIGURE 1-7 Example 1-5.

(a) How much water is in this lake?
(Photo is of one of the Rae Lakes

in the Sierra Nevada of California.)

(b) Model of the lake as a cylinder.

[We could go one step further and
estimate the mass or weight of this lake.
We will see later that water has a density
of 1000 kg/m?, so this lake has a mass of
about (10°kg/m?)(10" m’) ~ 10 kg,
which is about 10 billion kg or 10 million
metric tons. (A metric ton is 1000 kg,
about 2200 Ibs, slightly larger than a
British ton, 2000 1bs.)]

EI-T | Volume of a lake. Estimate how much
water there is in a particular lake, Fig. 1-7, which is roughly circular, about
1 km across, and you guess it to have an average depth of about 10 m.

SOLUTION No lake is a perfect circle, nor can lakes be expected to

have a perfectly flat bottom. We are only estimating here. To estimate the

volume, we use a simple model of the lake as a cylinder: we multiply the

i'wkerage depthlof c;he lake times its roughly circular surface area, as if the

ake were a cylinder (Fig. 1-7b). The volume V of a cylinder i - i

uct_of its height h times the area of its base: V = hzl-rrz, Whlesr(tahf izr?l(lie :VL?C}[,J iRE :1_f8 2 ml?‘mmeter’
radius Qf the circular base. The radius 7 is £ km = 500 m, so the volume is thickneislésse ormensuting small
approximately .

V=hmr? = (10m) X (3) X (5 X 10*°m)* = 8 X 106 m® ~ 10" m®,

where 7 was rounded off to 3; the symbol ~ means “approximately
equal to.” So the volume is on the order of 10’ m?, ten million cubic
meters. Because of all the estimates that went into this calculation, the

order-of-magnitude estimate (10”m’) is probably better t
‘ the 8 X 105m3 figure. ) is p y er to quote than

Here’s another Example:

| ESTIMATE | Thickness of a page. Estimate the thick-
ness of a page of this book.

SQLUTION At first you might think that a special measuring device, a
micrometer .(Flg. 1-8), is needed to measure the thickness of one page
since an ordinary ruler clearly won’t do. But we can use a trick or, to put

SECTION 1-7  Order of Magnitude: Rapid Estimating 13
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FIGURE 1-9 Example 1-7.
Diagrams are really useful!

it in physics terms, make use of a symmetry: we can mgke the reasonable
assumption that all the pages of this book are equal in thlckngss. Thug,
we can use a ruler to measure hundreds of pages at once. This book is
about 1000 pages long, when you count both sides of the page (front and
back), so it contains about 500 separate piece.s of paper. It is about 4.cm
thick (don’t include the cover, of course). So if 500 pages are 4 cm thick,
one page must be about

4 cm
500 pages
or, rounding off even more, about a tenth of a millimeter (0.1 mm), or
10™*m.

~8x%x10%cm = 8 X 1072 mm

Now let’s take a simple Example of how a diagram can be usefulifc?r
making an estimate. It cannot be emphasized enough how important 1t is
to draw a diagram when trying to solve a physics problem.

ESTIMATE | Height by triangulation. Estimate the
heh of the builing shown in Fig. 1-9a, by “triangulation,” with the
help of a bus-stop pole and a friend.

SOLUTION By standing your friend next to the pole, you estimate the
height of the pole to be 3m. You next step away frgm the pole until the tgp
of the pole is in line with the top of the building, Fig. 1—9a..You are 5ft6in.
tall, so your eyes are about 1.5 m above the ground. Your friend is tgller, and
when she stretches out her arms, one hand touches you, and the other touches
the pole, so you estimate that distance as 2m (Fig.‘ 1—‘9a). You t.hen pace off
the distance from the pole to the base of the building with big, 1-m-long,
steps, and you get a total of 16 steps or 16 m. Now you draw, to scale, tl}e
diagram shown in Fig. 1-9b using these measurements. You can measure,
right on the diagram, the last side of the triangle .to be ab‘out x =13m.
Alternatively, you can use similar triangles to obtain the height x:

15m _ x|
2m 18m

so x = 13% m.

final result: the building is about 15 m tall.

P T

Y

&

Finally you add in your eye height of 1.5 m above the ground to get your

Another example, this one made famous by the physicist Enrico
Fermi, is to estimate the number of piano tuners in a city, say, Chicago or
San Francisco. To get a rough order-of-magnitude estimate of the number
of piano tuners today in San Francisco, a city of about 700,000 inhabitants,
we can proceed by estimating the number of functioning pianos, how
often each piano is tuned, and how many pianos each tuner can tune. To
estimate the number of pianos in San Francisco, we note that certainly not
everyone has a piano. A guess of 1 family in 5 or 6 having a piano would
correspond to 1 piano per 20 persons, assuming an average family of 3 or
4 persons. As an order of magnitude, 1 piano per 20 people is certainly
more reasonable than 1 per 100 people, or 1 per every person, so let’s pro-
ceed with the estimate that 1 person in 20 has a piano, or about 35,000 pi-
anos in San Francisco. Now a piano tuner needs an hour or two to tune a
piano. So let’s estimate that a tuner can tune about 3 pianos a day. A piano
ought to be tuned every 6 months or a year—Iet’s say once each year. A
piano tuner tuning 3 pianos a day, 5 days a week, 50 weeks a year can tune
about 700 pianos a year. So San Francisco, with its (very) roughly 35,000
pianos needs about 50 piano tuners. This is, of course, only a rough esti-
mate. It tells us that there must be many more than 5 piano tuners, and
surely not as many as 500. A check of the San Francisco Yellow Pages
(done after this calculation) reveals about 50 listings. Each of these listings
may employ more than one tuner, but on the other hand, each may also do
repairs as well as tuning. In any case, our estimate is reasonable.

Mathematics in Physics

Physics is sometimes thought of as being a difficult subject. However,
sometimes it is the mathematics used that is the source of difficulties rather
than the physics itself. The appendices at the end of this book contain a
brief summary of simple mathematical techniques, including algebra,
geometry, and trigonometry, that will be used in this book. You may find it
useful to examine those appendices now to review old topics or learn any
new ones. You may also want to reread them later when you need those
concepts. Some mathematical techniques, such as vectors and trigonomet-
ric functions, are treated in the text itself, when we first need them.
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Introduction

[The Summary that appears at the end of each chapter
in this book gives a brief overview of the main ideas of
the chapter. The Summary cannot serve to give an under-
standing of the material, which can be accomplished only
by a detailed reading of the chapter.]

Physics, like other sciences, is a creative en-
deavor. It is not simply a collection of facts. Impor-
tant theories are created with the idea of explaining
observations. To be accepted, theories are “tested”

by comparing their predictions with the vesults of
actual experiments. Note that, in general, a theory
cannot be “proved” in an absolute sense.

Scientists often devise models of physical phe-
nomena. A model is a kind of picture or analogy
that seems to explain the phenomena. A theory,
often developed from a model, is usually deeper
and more complex than a simple model.

A scientific law is a concise statement, often
expressed in the form of an equation, which quan-
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titatively describes a particular range of phenomena
over a wide range of cases.

Measurements play a crucial role in physics, but
can never be perfectly precise. It is important o spec-
ify the uncertainty of a measurement either by stating
it directly using the * notation, and/or by keeping
only the correct number of significant ﬁg'u-res. .

Physical quantities are always specified 1'.elatlve
to a particular standard or unmit, and the unit used

QUESTIONS

should always be stated. The commonly accepted
set of units today is the Systéme International (SI),
in which the standard units of length, mass, and
time are the meter, kilogram, and second. .

When converting units, check all conversion
factors for correct cancellation of units. '

Making rough, order-of-magnitude estimates is
a very useful technique in science as well as in
everyday life.

1. It is advantageous that fundamental standards, such
as those for length and time, be accessible (easy to
compare to), invariable (do not change), indestruc-
tible, and reproducible. Discuss why these are advan-
tages and whether any of these criteria can be
incompatible with others.

2. What are the merits and drawbacks of using a per-
son’s foot as a standard? Discuss in terms of the cri-
teria mentioned in Question 1. Consider both (a) a
particular person’s foot, and (b) any person’s foot.

3. When traveling a highway in the mountains, you
may see elevation signs that read “914 m (3000 ft).”
Critics of the metric system claim that such numbers
show the mietric system is more complicated. 'How
would you alter such signs to be more consistent
with a switch to the metric system?

PROBLEMS

4. Suggest a way to measure the distance from Earth to
the Sun.

5, What is wrong with this road sign:

Boston 7 mi (11.263 km)?

6. List assumptions useful to estimate the number of
car mechanics in (a) San Francisco, (b) your home-
town, and then make the estimates.

7. Discuss how you would estimate the number ‘ of
hours you have spent in school thus far in your life.
Then make the estimate. ’

8. Discuss how the notion of symmetry could be used
to estimate the number of marbles in a one-liter jar.

9. You measure the radius of a wheel to be 4.16 cm..If
you multiply by 2 to get the diameter, should you write
the result as 8 cm or as 8.32 cm? Justify your answer.

[The problems at the end of each chapter are ranked I,
I1, or III according to estimated difficulty, with I prob-
lems being easiest. The problems are arranged by Sec-
tions, meaning that the reader should have read up to
and including that Section, but not only that Section—
problems often depend on earlier material. Each chapter
also has a group of General Problems that are not
arranged by Section and not ranked.]

SECTION 1-4
i. (I) The age of the universe is thought to be some-
where around 10 billion years. Assuming one signifi-
cant figure, write this in powers of ten in (a) years,
(b) seconds.
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2. (I) Write out the following numbers in full with a deci4—
mal point and correct number of zeros: (a) 8.69 2>< 107,
(b) 7.1 X 103, (¢) 6.6 X 107, (d) 8.76 X 10°, and
(e) 8.62 X 107°.

3. (I) Write the following numbers in powers of ten no-
tation: (a) 1,156,000, (b) 218, (¢) 0.0068, (d) 27.635,
(e) 0.21, and (f) 22.

. (I) How many significant figures do each of the follow-
ing numbers have: (a) 142, (b) 81.60, (c) 7.63, (d) 0.03,
(e) 0.0086, () 3236, and (g) 87007

5. (I) What is the percent uncertainty in the measure-
ment 2,26 + 0.25m?

6. (I) What, approximately, is the percent uncertainty
for the measurement 1.677

i

~3

. (I) Time intervals measured with a stopwatch typi-
cally have an uncertainty of about a half second, due
to human reaction time at the start and stop mo-
ments. What is the percent uncertainty of a hand-
timed measurement of (a) 5's, (b) 505, (¢) 5 min?

. (II) Multiply 2.079 X 10°m by 0.072 X 107!, taking
into account significant figures,

9, (II) Add 7.2 X10%s + 83 x10%s + 0.09 X10%s.
1, (IT) What is the area, and its approximate uncertainty,

of a circle of radius 2.8 X 10 cm?

. (1) What is the percent uncertainty in the volume of a
spherical beach ball whose radius is » = 3.86 + 0.08m?

SECTIONS 1-5 AND 1-6
12. (I) Express the following using the prefixes of Table

1-4: (a) 10° volts, (b) 107 meters, (c) 5 X 10° days,
(d) 8 X 10 bucks, and () 8 X 10 pieces.

. (I) Write the following as full (decimal) numbers

with standard units: (a) 86.6 mm, (b) 35 uV,
(c) 860 mg, () 600 picoseconds, (e) 12.5 femtometers,
(f) 250 gigavolts.

4. (I) How many kisses is 50 hectokisses? What would

you be if you earned a megabuck a year?

5. (I) Determine your height in meters.
i. (I) The Sun, on average, is 93 million miles from the

Earth. How many meters is this? Express (a) using
powers of ten, and (b) using a metric prefix.

7. () A typical atom has a diameter of about

1.0 X 107 m. (a) What is this in inches? (b) How
many atoms are there along a 1.0-cm line?

1%, (IT) Express the following sum with the correct

number of significant figures:
1.00m + 142.5cm + 1.24 X 10° um.

19. (II) Determine the conversion factor between (a) km/h

and mi/h, (b) m/s and ft/s, and (c) km/h and m/s.

L. (II) How much longer (percentage) is a one-mile

race than a 1500-m race (the metric mile”)?

GENERAL PROBLEMS
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i. () A light-year is the distance light (speed =
2.998 X 10°m/s) travels in 1.00 year. (a) How many
meters are there in 1.00 light-year? (b) An astro-
nomical unit (AU) is the average distance from the
Sun to Earth, 1.50 X 10°km. How many AU are
there in 1.00 light-year? (c) What is the speed of
light in AU/h?

. (HIT) The diameter of the moon is 3480 km. What is
the surface area, and how does it compare to the
land surface area of the Earth?

ECTION 1-7

(Note: Remember that for rough estimates, only round
numbers are needed both as input to calculations and as
final results.)

23 (I) Estimate the order of magnitude (power of

e

b
oed

]

27. (II) Make a rough estimate of the volume of your

o
R

L3

b
[

ten) of: (a) 7800, (b) 9.630 X 102, (c) 0.00076, and
(d) 150 X 10°.
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24. (II) Estimate how long it would take a good runner

to run across the United States from New York to
California.

(I) Make a rough estimate of the percentage of a
house’s outside wall area that consists of window area.

6. (II) Estimate the number of times a human heart

beats in a lifetime.

body (in cm?).
(I) Estimate the time to drive from Beijing (Peking)

to Paris (a) today, and (b) in 1906 when a great car
race was run between those two cities.

24. (1) Estimate the number of dentists (a) in San Fran-

cisco and (b) in your town or city,

. (IT) Estimate how long it would take one person to mow

a football field using an ordinary home lawn mower.

. (III) The rubber worn from tires mostly enters the

atmosphere as particulate pollution. Estimate how
much rubber (in kg) is put into the air in the United
States every year. To get you started, a good estimate
for a tire tread’s depth is 1cm when new, and the
density of rubber is about 1200 kg/m>.

2. An angstrom (symbol A) is an older unit of length, de-

fined as 107 m. (¢) How many nanometers are in 1.0
angstrom? (b) How many femtometers (the common
unit of length in nuclear physics) are in 1.0 angstrom?
(¢) How many angstroms are in 1.0 meter? (d) How
many angstroms are in 1.0 light-year (see Problem 21)?

fad
i

3. (@) How many seconds are there in 1.00 year? (b) How

many nanoseconds are there in 1.00 year? (c) How
many years are there in 1.00 second?

34. Estimate the number of bus drivers (a) in Washington,

D.C,, and () in your town.
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FIGURE 1-10 Problem 35.The wafer held by hand
(above) is shown below, enlarged and illuminated by

colored light. Visible are rows of integrated circuits (chips).

5, Computer chips (Fig. 1-10) are etched on circular
silicon wafers of thickness 0.60 mm that are sliced
from a solid cylindrical silicon crystal of length
30 cm. If each wafer can hold 100 chips, what is the
maximum number of chips that can be produced
from one entire cylinder?

Estimate the number of gallons of gasoline consumed
by automobile drivers in the United States, per year.

7. Estimate the number of gumballs in the machine
shown in Fig. 1-11.

Lod
51

36.

w

FIGURE 1-11 Problem 37. Estimate the number
of gumballs in the machine.
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34, An average family of four uses roughly 1200 liters
(about 300 gallons) of water per day. (One liter =
1000 cm®.) How much depth would a lake lose per
year if it uniformly covered an area of 50 square
kilometers and supplied a local town with a popula-
tion of 40,000 people? Consider only population
uses, and neglect evaporation and so on.

39, How big is a ton? That is, what is the volume of some-
thing that weighs a ton? To be specific, estimate the di-
ameter of a 1-ton rock, but first make a wild guess: will
it be 1ft across, 3 ft, or the size of a car? [Hint: Rock
has mass per volume about 3 times that of water, which
is 1 kg per liter (10* cm®) or 62 Ibs per cubic foot.]

40. A violent rainstorm dumps 1.0cm of rain on a city
5 km wide and 8 km long in a 2-h period. How many
metric tons (1 ton = 10° kg) of water fell on the city?
[1cm? of water has a mass of 1 gram = 103 kg,]

41. Hold a pencil in front of your eye at a position
where its end just blocks out the Moon (Fig. 1-12).
Make appropriate measurements to estimate the di-
ameter of the Moon, given that the Earth-Moon dis-
tance is 3.8 X 10° km.

42. The volume of an object is 1000 m®. Express this vol-
ume in (a) eod?, (b) £t (¢) in’.

43, Estimate how long it would take to walk around the
world.

44. Noah’s ark was ordered to be 300 cubits long, 50 cu-
bits wide, and 30 cubits high. The cubit was a unit of
measure equal to the length of a human forearm,
elbow to the tip of the longest finger. Express the di-
mensions of Noah’s ark in meters.

EIGURE 1-12 Problem 41. How big is the Moon?

DESCRIBING MOTION:

Space shuttle Discovery landing

on Earth. The parachute helps it
to reduce its speed quickly. The

directions of Discovery’s velocity
and acceleration are shown by

the green (v) and gold (a) arrows.

Note that they (v and a) point in
opposite directions.

KINEMATICS IN ONE DIMENSION

“{he motion of objects—baseballs, automobiles, joggers, and even
the Sun. and Moon—is an obvious part of everyday life. Although
- the ancients acquired significant insight into motion, it was not
until comparatively recently, in the sixteenth and seventeenth centuries
that our modern understanding of motion was established. Many con—,
tributed to this understanding, but, as we shall soon see, two individuals
?5361411(; _01117t22;l;.ove the rest: Galileo Galilei (1564-1642) and Isaac Newton
The study of the motion of objects, and the related concepts of force
apd energy, form the field called mechanics. Mechanics is customarily di-
vided into two parts: kinematics, which is the description of how objects
move, and dynamics, which deals with force and why objects move as the
do. This chapter and the next deal with kinematics. ’
We start by discussing objects that move without rotating (Fig. 2—1a)
Such motion is called translational motion. In the present chapter we wili
be concgl‘ned with describing an object that moves along a straight-line
path,‘whlch is one-dimensional motion. In Chapter 3 we will study how to
describe translational motion in two (or three) dimensions.

(a) (b)

FIGURE 2-1 The pinecone
in (a) undergoes pure translation
as it falls, whereas in (b) it is
rotating as well as translating,
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