Evolution & Adaptation

Evidence for Evolution

Fossils

- Fossils are preserved remains of ancient organisms
- best evidence of evolution
- formed when plant or animal matter is changed to stone or the "imprint" is solidified.

Tarpits

 teeth and bones have been found where animals were trapped in thick mud.

Later, became tarpits.

Amber

- Hardened gum/ sap of a tree
 - Usually insects are trapped

Flash Frozen

- Organism quickly frozen in ice
 - Wooly Mammoth found nearly intact

Comparative Anatomy

- What similar structures did the animals have, then lose or gain, compared to animals of today:
 - skeletal, nervous, circulatory systems

Embryology

- In vertebrates, the early stages of development look very similar with tails and gill slits
- Therefore, similar ancestors embryology traces evolutionary pathway

DNA

 DNA has the same structure for every living thing on Earth

© 2007 Encyclopedia Britannica, Inc.

Natural Selection Diversity of Life

Charles Darwin the Naturalist

Do not copy

Voyage of the Beagle

Charles Darwin

- born Feb. 12, 1809
- naturalist
- joined Crew of HMS
 Beagle, 1831 hired for
 a 5 year voyage around
 world to observe plants
 and animals

Darwin's Voyage of Discovery

A reconstruction of the HMS Beagle sailing off Patagonia.

Darwin Left England in 1831

Darwin returned 5 years later in 1836

DO NOT COPY

The Galapagos Islands

- Volcanic islands off the coast of South America
- Darwin noticed that animal species on the islands varied from mainland species & species from island-toisland also varied

The Galapagos Islands

- Darwin observed birds on the islands called Finches
- He noticed huge variation in the types of beaks the finches had
- The different types of beaks seemed to correlate with different food sources on each island (seeds, nuts, berries, insects...)
- Finches had different types of beaks adapted to their type of food gathering

Galápagos Islands Finches						
Shape of Head and Beak						
Name	Vegetarian tree finch	Large insectivorous tree finch	Woodpecker finch	Cactus ground finch	Sharp-beaked ground finch	Large ground finch
Main Food	Fruit	Insects	Insects	Cactus	Seeds	Seeds
Feeding Adaptation	Parrotlike beak	Grasping beak	Uses cactus spines	Large crushing beak	Pointed crushing beak	Large crushing beak
Habitat	Trees	Trees	Trees	Ground	Ground	Ground

Voyage of the Beagle

In addition to the finches, Darwin made numerous other observations and collected evidence that led him to propose a Revolutionary Hypothesis about the way life changes over time

Natural Selection

Nature determines
("selects") the organisms
that will survive

Natural selection

- selection for traits that are most successful in the current environment
- a constant process environments are changing and so does success

Common Descent with Modification

- Darwin proposed that organisms descend from common ancestors and change with time, diverging from the original common form
- This causes the evolution of new species

Darwin's 5 Ideas

- 1. Overpopulation
- 2. Competition
- 3. Variation
- 4. Survival of the Fittest
- 5. New Species

1. OVERPOPULATION

 Organisms tend to produce many offspring more than the environment can support

Organisms will reproduce until something stops

them (usually food)

2. COMPETITION

 Because of overpopulation, individuals compete with one another over limited resources → food, water, shelter, mates

Competition occurs both within and between

species

3. VARIATION

- Individuals of a population vary in their traits and characteristics
- this variation is passed on to offspring.

4. SURVIVAL OF THE FITTEST

- individuals with advantageous genetic traits are better adapted to their environment
- This increases their chance of survival
 - This is called survival of the fittest

5. New Species

- New species results by inheritance of trait(s), on genes, that give them an advantage over others.
- ·New species evolve

SPECIATION

- Where one species evolves in to one or more other species
- Also called adaptive radiation

ADAPTATION

 A inheritable characteristic that provides an advantage for survival and reproduction

Adaptations Can Be:

- -Structural a part organism has to help
 - · Speed, Camouflage, Claws, Quills, etc.
- -Physiological physical or chemical part inside the organism
 - Maintain internal temp., or use less water for photosynthesis
- -Behavioural -something organism does
 - Solitary, Migration, Herds, Packs etc.

Examples of Natural Selection

- 1. Darwin's finches
- 2. Peppered moth
- 3. Antibiotic Resistant bacteria
- 4. Pesticide resistant mosquitoes

Natural selection acts on a population in 3 ways:

1. If the environment favours the <u>average</u> of the distribution, the selection is called <u>stabilizing selection</u>

2. If the environment favours **one extreme**, the selection is **directional**

3. If the environment favours **both extremes**, the selection is **disruptive**

Factors which influence genetic variation

Factors which increase genetic variation

1. Mutations

- Permanent change in DNA
- Main source of new alleles

2. Gene flow

- Individuals of different populations immigrate or emigrate between populations of the same species
- Brings new genes into a population adds variation to gene pool – new alleles
- Prevents specialization to environment

3. Recombination

- parts of chromosomes switch parts
- crossing over during meiosis

Factors which decrease genetic variation:

1. Natural selection

covered already

2. Genetic Drift

luck

- Random or chance change in the frequency of a gene
- A change in allelic frequency over time due to chance

 Eg. a natural disaster could wipe out a large number of animals of a species. Those that survived are able to reproduce – not necessarily the strongest / fittest -

3. Non-random mating

- Some organisms have more opportunity to mate than others & therefore produce more offspring (& more copies of their genes).
- Has more desirable trait
- 2 reasons for non-random mating
 - Simply easier to mate with a nearby individual (rather than one far away).
 - Competition for mates occurs among animals = active selection of mating partner (not random)

Convergent vs. Divergent Evolution

Convergent evolution

= evolution toward the **SAME** type of adaptation among different groups of organisms

 Produces analogous structures which have the SAME FUNCTION but different structure

Example of convergent evolution

- Wing of an insect and wing of a bird:
 - Both are used for flying but each has a very different structure
 - Bird = muscle, bone, feathers, skin, tissue
 - Insect = cartilage rods
 with membrane

Divergent Evolution

- = evolution which led to <u>DIFFERENT</u> structures developing from an original body plan.
- produces <u>homologous structures</u> =
 <u>DIFFERENT FUNCTION</u> but same structure due
 to a common ancestor

Example of divergent evolution:

- Ex. Forelimb of mammals = same bone pattern but each limb is specialized / adapted to the animal's way of life.
 - Human: grasping (hand)
 - Whale / dolphin: swimming (flipper)
 - Bat: flying (wing)

Vestigial Structures

 remnants of a structure that had a function in an ancestor but no longer does in the evolved organism.

Ex. Appendix – used to be for digestion

- Tail bone
- Snake hips pelvis bone but no legs
- Chickens have gene for teeth but no teeth

Rate of evolutionary change, extinction & factors involved in extinction

Gradualism

 Evolutionary change that occurs slowly & constantly over time.

 Based on evidence from the fossil record where some organisms have evolved slowly (in geological time)

Ex. Sharks, crocodiles, cockroaches, horseshoe crabs

Punctuated Equilibrium

- There is a period of stability, where little change, if any occurs.
- However, this is followed by periods of rapid change to a species of plant or animal
- Can be caused by environmental conditions such as an ice age. Some species will die off but others will need to change quickly and adapt to new environments – therefore, rapid evolution
- Animals with higher reproductive rates are better able to adapt. Therefore, new opportunities presented for survivors

Ex. Mammals, birds

Punctuated Equilibrium

Gradualism

Punctuated equilibrium

Endangered Species

- Wild species with so few survivors that the species could soon become extinct
- Examples

Extinction

- Complete
 disappearance of a
 species form the Earth
- Stops the evolution of that animal
- Leaves niches open for other animals to "fill"
- Increases speciation of other organisms
- Examples

Factors causing extinction

- Pollution
- Climate change
- Hunting/poaching
- Invasive species
- Loss of habitat
- Speciation
- Can you think of others??

