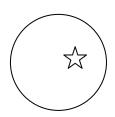

ACTUAL SIZE

<u>POWER</u>	<u>Diameter of field of view</u>
40x low	4000 μ m
100x medium	2000 μm
400x high	400 μm
1000x oil	200 μm

Actual size (μ m) = diameter of field of view (μ m) # of times object fits across field

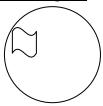

Example: looking through the microscope you see:

Low 40x (2 across) AS = $\frac{5000 \ \mu m}{2}$ = 2500 μm

Example: looking through the microscope you see:

If low power = $4000\mu m$, field of view on high power is 500 μm . 4 across stars can fit across.

 $\frac{500 \ \mu m}{4} = 125 \mu m$


High 400x

DRAWING MAGNIFICATION

Drawing magnification = size of drawing of object (μ m) Actual size (μ m)

 $(mm \times 1000 = \mu m)$

Example: You drew:

Actual size of object is 40µm.

You used a ruler to measure the object you drew and it was 10 mm in length (the longest way)

We must have the same units so we need to convert mm into μm .

So,
$$10\text{mm} \times 1000 = 10,000 \mu\text{m}$$

Drawing magnification =
$$\frac{10000\mu m}{40\mu m}$$

= 250 times

This means that we drew the object 250 times bigger than it actually is in real life.