25. The diagram below shows a circuit with four possible meter locations.

In which locations should an ammeter and voltmeter be connected to correctly measure the current through $\,R_2\,$ and the voltage drop across $\,R_2\,$?

	CURRENT THROUGH ${ m R}_2$	VOLTAGE DROP ACROSS R ₂
A.	2	1
B.	2	3
C.	4	1
D.	4	3

26. What are the potential differences, V_1 and V_2 , in the circuit shown below?

	Potential Difference V ₁	Potential Difference V ₂
A.	1.0 V	5.0 V
В.	1.0 V	6.0 V
C.	5.0 V	1.0 V
D.	5.0 V	5.0 V

27. A 2.50W device requires 1.20V to operate properly. A 1.45V cell, with internal resistance r, is used to power this device. What value of r enables the cell to provide 1.20V to the device?

- A. 0.120Ω
- B. 0.145Ω
- C. 0.576Ω
- D. 0.841Ω

28. A 660 W electric heater is designed to operate from a 120 V source. If the source voltage drops to 80.0 V, what will be the power dissipated by the same heater? (Assume the resistance of the heater is constant.)

- A. 73.3 W
- B. 293 W
- C. 440 W
- D. 660 W

29. The total resistance between points X and Y is 14.0 Ω . What is the value of R?

- A. 6.0Ω
- Β. 8.3 Ω
- C. 10Ω
- D. 210Ω

30. In the circuit shown below, voltmeter readings are taken when switch S is closed and open.

Which of the following is correct?

	VOLTMETER READINGS		
	SWITCH CLOSED	SWITCH OPEN	
A.	20 V	30 V	
В.	30 V	30 V	
C.	40 V	20 V	
D.	40 V	30 V	

31. Which of the following arrangements would draw the smallest current when connected to a potential difference? All resistors have the same value.

32. What is the power dissipated in resistor R_1 in the circuit shown in the diagram below?

- A. 0.83 W
- B. 0.97 W
- C. 1.8 W
- D. 2.8 W

33. The diagram below shows part of an electrical circuit.

What is the current through resistor R_1 ?

- A. 2.0 A
- B. 3.0 A
- C. 4.0 A
- D. 6.0 A

34. A 75 W bulb is connected across a 120 V source. While the bulb is lighted, what is the effective resistance of the bulb?

- A. 0.62Ω
- Β. 1.6 Ω
- C. 47Ω
- D. 190 Ω

35. What is the voltage, V, of the power supply shown in the circuit?

- A. 24 V
- B. 52 V
- C. 72 V
- D. 96 V
- 36. What is the emf of the battery shown?

- A. 2.0 V
- B. 8.0 V
- C. 10 V
- D. 12 V
- 37. Two identical resistors connected in series have a **total** power output of 400 W. Assuming V and R remain constant, what would the total power output be when the resistors are re-connected in parallel?

- A. 200 W
- B. 400 W
- R R R R
- C. 800 W
- D. 1600 W

38. In the following circuit, determine the value of resistor R.

- Α. 3.2 Ω
- B. 5.2Ω
- C. 9.0Ω
- D. 23Ω

39. A battery provides 3.20 W of power to an external resistance. What power is dissipated as heat by the internal resistance within the battery?

- A. 0.19 W
- B. 3.4 W
- C. 3.6 W
- D. 60 W

40. Calculate the current through the 6.0Ω resistor in the circuit shown.

- A. 1.1 A
- B. 2.0 A
- C. 4.0 A
- D. 6.7 A

1. a) Find the current in the 8.0Ω bulb shown below.

(5 marks)

b)	(i)	The 3.0 Ω bulb is removed from the circuit so that only 3 bulbs remain. The 8.0 Ω bulb will now: (Circle one)	(1 mark)
		A. be dimmer.B. be brighter.	
		C. remain the same.	
	(ii)	Using principles of electrical circuits, explain your answer to b(i).	(4 marks)

2. Consider the circuit shown in the diagram below.

a) What is the total resistance of the circuit?

(3 marks)

b)	What is the current through the 100Ω resistor?	(2	marks)
c)	What is the power dissipated in the 100 Ω resistor?	(2	marks)
**	* *	No.	