3. A 9.0 V battery with an internal resistance of 0.80 Ω is connected to two resistors as shown below. Determine the terminal voltage V_{ab} of the battery. (7 marks) 4. Consider the circuit shown below. a) What is the current through the 7.0Ω resistor? (5 marks) b) How much charge flows through the 7.0Ω resistor in a 30 s interval? (2 marks) ## 5. What is the potential difference across the 6.0Ω resistor in the circuit shown? (7 marks) 6. A student connects a power supply to a circuit and measures the potential difference *V* at its terminals and the current *I* delivered to the circuit. | V(V) | 0.0 | 3.0 | 6.0 | 9.0 | 12.0 | |--------------|------|------|------|------|------| | <i>I</i> (A) | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | a) Plot a graph of V versus I on the axes below. (2 marks) |) | Calculate the slope of the line, expressing your answer in appropriate units. | (2 marks) | |----|---|-----------| c) | What does the slope of the line represent? | (1 mark) | | | | | | | | | | | | | 7. The circuit shown in the diagram below consists of a 9.00 V battery and a 3.50 W light bulb. a) If a current of 0.400 A leaves the battery, what is the internal resistance, r, of the battery? (5 marks) | b) | The light bulb is now replaced by a lower resistance (brighter) light bulb. voltage will now be | The terminal | |----|---|--------------| | | less than before. the same as before. greater than before. | | | | (Check one response.) | (1 mark) | | c) | Using principles of physics, explain your answer to b). | (3 marks) | | | | | | | | | 8. A power supply was connected to a resistor and a student plotted the graph of current, I, flowing through the resistor versus time, t, as shown below. a) Calculate the area under the graph between t = 0 s and t = 30 s. (2 marks) b) What does this area represent? (1 mark) c) The same power supply is connected to a resistor of greater resistance. For this new set-up, sketch a possible graph on the axes below and label it c). (2 marks) | a) | What current flows through the circuit? | (2 marks) | |----|---|-----------| b) | What is the resistance of the circuit? | (2 marks) | 9. A 12 V battery transfers 33 C of charge to an external circuit in $7.5\ s.$