CHAPTER 17

1. We find the work done by an external agent from the work-energy principle:

$$W = \Delta KE + \Delta PE = 0 + q(V_b - V_a)$$

= $(-8.6 \times 10^{-6} \text{ C})(+75 \text{ V} - 0) = -6.5 \times 10^{-4} \text{ J (done by the field)}.$

2. We find the work done by an external agent from the work-energy principle:

```
W = \Delta KE + \Delta PE = 0 + q(V_b - V_a)
= (1.60 \times 10^{-19} \text{ C})[(-50 \text{ V}) - (+100 \text{ V})] = -2.40 \times 10^{-17} \text{ J (done by the field)};
W = q(V_b - V_a)
= (+1 \text{ e})[(-50 \text{ V}) - (+100 \text{ V})] = -150 \text{ eV}.
```

3. Because the total energy of the electron is conserved, we have

$$\Delta \text{KE} + \Delta \text{PE} = 0$$
, or $\Delta \text{KE} = -q(V_B - V_A) = -(-1.60 \times 10^{-19} \text{ C})(21,000 \text{ V}) = 3.4 \times 10^{-15} \text{ J};$ $\Delta \text{KE} = -(-1 \text{ e})(21,000 \text{ V}) = 21 \text{ keV}.$

4. Because the total energy of the electron is conserved, we have

$$\Delta \text{KE} + \Delta \text{PE} = 0;$$
 $\Delta \text{KE} + q(V_B - V_A) = 0;$
 $3.45 \times 10^{-15} \, \text{J} + (-1.60 \times 10^{-19} \, \text{C})(V_B - V_A);$ which gives $V_B - V_A = 2.16 \times 10^3 \, \text{V}.$

Plate B is at the higher potential.

5. For the uniform electric field between two large, parallel plates, we have

$$E = \Delta V/d = (220 \text{ V})/(5.2 \times 10^{-3} \text{ m}) = 4.2 \times 10^4 \text{ V/m}.$$

6. For the uniform electric field between two large, parallel plates, we have

$$E = \Delta V/d$$
;
640 V/m = $\Delta V/(11.0 \times 10^{-3} \text{ m})$, which gives $\Delta V = \boxed{7.04 \text{ V}}$.

7. Because the total energy of the helium nucleus is conserved, we have

$$\Delta \text{KE} + \Delta \text{PE} = 0;$$
 $\Delta \text{KE} + q(V_B - V_A) = 0;$
 $65.0 \text{ keV} + (+2e)(V_B - V_A);$ which gives $V_B - V_A = -32.5 \text{ kV}.$

8. For the uniform electric field between two large, parallel plates, we have

$$E = \Delta V/d$$
;
 $3 \times 10^6 \text{ V/m} = (100 \text{ V})/d$, which gives $d = \boxed{3 \times 10^{-5} \text{ m}}$.

9. We use the work-energy principle:

$$W = \Delta KE + \Delta PE = \Delta KE + q(V_b - V_a);$$

$$25.0 \times 10^{-4} \text{ J} = 4.82 \times 10^{-4} \text{ J} + (-7.50 \times 10^{-6} \text{ C})(V_b - V_a), \text{ which gives } V_b - V_a = -269 \text{ V}, \text{ or } V_a - V_b = 269 \text{ V}.$$