41. We find the initial charge on the $7.7-\mu$ F capacitor when it is connected to the battery:

 $Q = C_1 V = (7.7 \,\mu\text{F})(125 \,\text{V}) = 962.5 \,\mu\text{C}.$

When C_1 is disconnected from the battery and then connected to C_2 , some charge will flow from C_1 to C_2 . The flow will stop when the voltage across the two capacitors is the same: $V_1 = V_2 = 15 \text{ V}.$

Because charge is conserved, we have

 $Q = Q_1 + Q_2$

We find the charge remaining on C_1 from

 $Q_1 = C_1 V_1 = (7.7 \,\mu\text{F})(15 \,\text{V}) = 115.5 \,\mu\text{C}.$

The charge on C₂ is

 $Q_2 = Q - Q_1 = 962.5 \,\mu\text{C} - 115.5 \,\mu\text{C} = 847 \,\mu\text{C}.$

We find the value of C_2 from

 $Q_2 = C_2 V_2$;

847 μ C = $C_2(15 \text{ V})$, which gives $C_2 =$

42. We find the initial charges on the capacitors:

 $Q_1 = C_1 V_1 = (2.50 \,\mu\text{F})(1000 \,\text{V}) = 2500 \,\mu\text{C};$

 $Q_2 = C_2 V_2 = (6.80 \,\mu\text{F})(650 \,\text{V}) = 4420 \,\mu\text{C}.$

When the capacitors are connected, some charge will flow from C_2 to C_1 until the potential difference across the two capacitors is the same:

 $V_1' = V_2' = V.$

Because charge is conserved, we have

 $Q = Q_1' + Q_2' = Q_1 + Q_2 = 2500 \,\mu\text{C} + 4420 \,\mu\text{C} = 6920 \,\mu\text{C}.$

For the two capacitors we have

 $Q_1' = C_1 V$, and $Q_2' = C_2 V$.

When we add these, we get

 $Q_1' + Q_2' = Q = (C_1 + C_2)V;$

 $6920 \,\mu\text{C} = (2.50 \,\mu\text{F} + 6.80 \,\mu\text{F})V$, which gives $V = 744 \,\text{V}$.

The charge on C_1 is

 $Q_1' = C_1 V = (2.50 \,\mu\text{F})(744 \,\text{V}) = 1.86 \times 10^3 \,\mu\text{C} = 1.86 \times 10^{-3} \,\text{C}.$

The charge on C_2 is

 $Q_2' = C_2 V = (6.80 \ \mu\text{F})(744 \ V) = 5.06 \times 10^3 \ \mu\text{C} = [5.06 \times 10^{-3} \ \text{C}]$

43. The energy stored in the capacitor is

 $U = \frac{1}{2}CV^2 = \frac{1}{2}(7200 \times 10^{-12} \text{ F})(550 \text{ V})^2 =$

 1.09×10^{-3} I.

44. We find the capacitance from

 $U=\frac{1}{2}CV^2$;

200 J = $\frac{1}{2}$ C(6000 V)², which gives C = 1.1 × 10⁻⁵ F = 11 µF.